Categories
Linux Raspberry Pi

Raspberry Pi + LED Matrix Display project

Intro

A friend bought a bunch of parts and thought we could work on it together. He wanted to reproduce this project: Raspberry Pi Audio Spectrum Display – Hackster.io

So of interest here is that it involved a 64×64 LED matrix display, and a “hat” sold by Adafruit to supposedly make things easier to connect.

Now I am not a hardware guy and never pretended to be. When we realized that it required soldering, I bought those supplies but I didn’t want to be the one to mess things up so he volunteered for that. And yes, it was a mess.

Equipment

See later on in the post for the equipment we used.

The story continues

Who knew that gold on the PCB could be ruined so easily after you’ve changed your mind about a soldered joint and decided to undo what you’ve done? The experience pretty much validated my whole approach to staying away from soldering. So we ruined that hat and had to order another one. While we waited for it I developed a certain strtategy to deal with the shortcomings of the partially destroyed hat. See the section at the bottom entitled Recipe for a broken hat.

Comments on the project

I don’t think the guy did a good job. Details left out where needed, extra stuff added. For instance you don’t need to order that Firebeetle – it’s never used! Also, I’ve been told that his python isn’t very good either. But in general we followed his skimpy instructions. So we ordered the LED matrix from DFRobot, not Adafruit, and I think it’s different. In our case we did indeed follow the project suggestion to wire the 2×8 pin as shown in their (DFRobot’s) picture, leaving out the white wire. Once we soldered the white wire to the hat’s gpio pin 24, we were really in business. What we did not need to do is to solder pin E to either pin 8 or 16. (This is something you apparently need to do for the Adafruit LED.) In our testing it didn’t seem to matter whether or not those connections were made so we left it out on our second hat.

You think he might have mentioned just how much soldering is involed. Let’s see you have 2×20 connector, a 2×8 connector plus a single gpio connection = 57 pins to solder. Yuck.

What we got to work

Deploying images on these LED displays is cool. You just kind of have to see it. It’s hard to describe why. The picture below does not do it justice. Think stadium scoreboard.

In rpi-rgb-led-matrix/utils directory we followed the steps in the README.md file to compile the LED viewer:

sudo apt-get update
sudo apt-get install libgraphicsmagick++-dev libwebp-dev -y
make led-image-viewer
                    
#!/bin/sh
# invert images because the sound stuff is otherwise upside-down
sudo led-image-viewer –led-pixel-mapper=”U-mapper;Rotate:180″ –led-gpio-mapping=adafruit-hat –led-cols=64 –led-rows=64 /home/pi/walk-in-the-woods.jpg
Walk in the woods

Do we have flicker? Just a tiny bit. You wouldn’t notice it unless yuo were staring at it for a few seconds, and even then it’s just isolated to a small section of the display. Probably shoddy soldering – we are total amateurs.

Tip for your images

Consider that you only have 64 x 64 pixles to work with. So crop your pictures beforehand to focus on the most interesting aspect – people if there are people in the picture (like we’ve done in the above image), specifically faces if there are faces. Otherwise everything will just look like blurs and blobs. You yourself do not have to resize your pictures down to 64 x 64 – the led software will do the resizing. So just focus on cropping down to a square-sized part of the picture you want to draw attention to.

Real-time audio

So my friend got a USB microphone. I developed the following script to make the python example work with real-time sounds – music playing, conversatiom, whatever. It’s really cool – just the slightest lag. But, yes, the LEDs bounce up in response to louder sounds.

So in the directory rpi-rgb-led-matrix/bindings/python/samples I created the script drjexample.sh.

                    

#!/bin/sh
# DrJ 6/21
# make the LED react to live sounds by use of a USB microphone
# I am too lazy to look up how to make the python program read from STDIN so I will just
# make the equivalent thing by creating test.wav as a nmed pipe. It's an old linux trick.

rm test.wav; mkfifo test.wav

# background the python program. It will patiently wait for input
sudo python spectrum_matrix.py &

# Now run ffmpeg
# see my own post, https://drjohnstechtalk.com/blog/2019/04/live-stream-to-youtube-from-a-raspberry-pi-webcam/
ffmpeg \
-thread_queue_size 4096 \
-f alsa -i plughw:1,0 \
-ac 2 \
-y \
test.wav

So note that by having inverted the image (180 degree rotation) we have the sounds bars and images both in the same direction so we can switch between the two modes.

I believe to get the python bindings to work we needed to install some additional python libraries, but that part is kind of a blur now. I think what should work is to follow the directions in the README.md file in the directory rpi-rgb-led-matrix/bindings/python, namely

sudo apt-get update && sudo apt-get install python2.7-dev python-pillow -y
make build-python
sudo make install-python

Hopefully that takes care of it. For sure you need numpy.

Future project ideas

How about a board that normally plays a slideshow, but when the ambient sound reaches a certain level – presumably because music is playing – it switches to real-time sound bar mode?? We think it’s doable.

Recipe for a broken hat

For the LED matrix display we got the DFRobot one since that’s what was linked to in the project guide. But the thing is, the reviewer’s write-up is incomplete so what you need to do involves a little guesswork.

At the end of the day all we could salvage while we wait for a new Adafruit hat to come in is the top fourth of the display! The band below it is either blank, or if we push on the cables a certain way, an unreliable duplicate of the top fourth.

The next band suffers from a different problem. Its blue is non-functional. So it’s no good…

And the last band rarely comes on at all.

OK? So we’re down to a 16 x 64 pixel useable area.

But despite all those problems, it’s still kind of cool, I have to admit! I know at work we have these digital sign boards and this reminds me of that. So first thing I did was to create a custom banner – scrolling text.

I call this display program drjexample2.sh. I put it in the directory rpi-rgb-led-matrix/examples-api-use

                    
#!/bin/sh
# DrJ – 6/21
# nice example
sudo ./demo -D1 –led-rows=64 –led-cols=64 –led-multiplexing=1 –led-brightness=50 -m25 /home/pi/pil_text.ppm

But that requires the existence of a ppm file containing the text I wanted to scroll, since I was working by example. So to create that custom PPM file I created this python script.

                    
#!/usr/bin/python3
from PIL import Image, ImageDraw, ImageFont

# our fonts
###fnt = ImageFont.truetype(“/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf”, 14)
fnt = ImageFont.truetype(“/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf”, 16)
fnt36 = ImageFont.truetype(“/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf”, 36)
fnt2 = ImageFont.truetype(“/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf”, 18)
fntBold = ImageFont.truetype(“/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf”, 40)

###img = Image.new(‘RGB’, (260, 30), color = (73, 109, 137))
img = Image.new(‘RGB’, (260, 30), color = ‘black’)

d = ImageDraw.Draw(img)
###d.text((0,0), “Baby, welcome to our world!!!”, font=fnt, fill=(255,255,0))
d.text((0,0), “Baby, welcome to our world!!!”, font=fnt, fill=’yellow’)

#img.save(‘pil_text.png’)
img.save(‘pil_text.ppm’, format=’PPM’)

Once I discovered the problem with the bands – by way of running all the demos and experimenting with the arguments a bit – I noticed this directory: rpi-rgb-led-matrix/utils. I perked right up because it held out the promise of displaying jpeg images. Anyone who has seen any of my posts know that I am constantly putting out raspberry pi based photo displays in one form or another. For instance see https://drjohnstechtalk.com/blog/2021/01/raspberry-pi-photo-frame-using-the-pictures-on-your-google-drive-ii/

or

https://drjohnstechtalk.com/blog/2020/12/raspberry-pi-photo-frame-using-your-pictures-on-your-google-drive/

Matrix Display

But see how cool it is? No? It’s a sleeping, recumbent baby. It’s like the further away from it you get, the clearer it becomes. Trust me in person it does look good. And it feels like creating one of those bright LED displays they use in ballparks.

But this same picture also shows the banding problem.

To get the picture displayed I first cropped it to make it wide and short. I wisely chose a picture which was amenable to that approach. I created this display script:

                    
#!/bin/sh
sudo led-image-viewer –led-no-hardware-pulse –led-gpio-mapping=adafruit-hat –led-cols=64 –led-rows=64 –led-multiplexing=1 /home/pi/baby-sleeping.jpg

But before that can all work, you need to compile the program. Just read through the README.md. It gives these instructions which I followed:

sudo apt-get update
sudo apt-get install libgraphicsmagick++-dev libwebp-dev -y
make led-image-viewer

It went kind of slowly on my RPi 3, but it worked without incident. When I initially ran the led-image-viewer nothing displayed. So the script above shows the results of my experimentation which seems appropriate for our particular matrix display.

How did we get here?

Just to mention it, we followed the general instructions in that project. So I guess no need to repeat the recipe here.

Slideshow

You know I’m not going to let an opportunity to create a slideshow go to waste. So i created a second appropriately horizontal image which I might effectively show in my narrow available band of 16 x 64 pixels. just to share the little script, it is here:

                    
#!/bin/sh
cd /home/pi
sudo led-image-viewer –led-no-hardware-pulse –led-gpio-mapping=adafruit-hat –led-cols=64 –led-rows=64 –led-multiplexing=1 -w6 -f baby-and-mom.jpg baby-sleeping.jpg

This infinitely loops over two pictures, displaying each for six seconds.

Start on boot

I have the slideshow start on boot using a simple technique I’ve developed. You edit the crontab file (crontab -e) and enter at the bottom:

                    
@reboot sleep 35; /home/pi/rpi-rgb-led-matrix/utils/jdrexample2.sh > drjexample.log 2>&1
Lessons learned

My friend ordered all the stuff listed on the DFRobot project page, including their 64×64 LED matrix. Probably a mistake. They basically don’t document it and refer you to Adafruit, where they deal with a 64×64 LED matrix – their own – which may or may not have the same characteristics, leaving you somewhat in limbo. Next time I would order from Adafruit.

As mentioned above that gold foil on printed circuit boards really does come off pretty easily, and then you’re hosed. Because of the lack of technical specs we were never really sure if we needed to solder the E contact to 8 or to 16 and destroyed all those terminals in the process of backing out.

I actually created custom ppm files of solid colors, red, blue, green, white, so that I could prove my suspicions about the third band. Red and green display fine, blue not at all. White displays as yellow.

Viewed close up, the LED matrix doesn’t look like much, and of course I was close up when I was working with it. But when I stepped back I realized how beautiful a brightly illuminated picture of a baby can be! The pixels merge and your mind fills in the spaces between I guess.

The original idea was to tackle sound but I got stuck on the ability to use it as a photo frame (you know me). But he wants to return to sound which I am dreading….

Testing audio

In our first tests. the audio example wasn’t working. But now it seems to be. The project guy’s python code is named spectrum_matrix.py if I recall correctly. It goes into rpi-rgb-led-matrix/bindings/python/samples. And as he says, you run it from that directory as

$ sudo python spectrum_matrix.py

But, his link to test.wav is dead – yet another deficiency in his write-up. At least in my testing not every possible WAV file may work. This one, moo sounds, does however. http://soundbible.com/grab.php?id=1778&type=wav So, it plays for a few seconds – I can hear it through earphones – and the LEDs kind of go up and down. We recorded a wav file and found that that does not work. The error reads like this:

Home directory not accessible: Permission denied
W: [pulseaudio] core-util.c: Failed to open configuration file '/root/.config/pulse//daemon.conf': Permission denied
W: [pulseaudio] daemon-conf.c: Failed to open configuration file: Permission denied
Traceback (most recent call last):
File "spectrum_matrix.py.orig", line 56, in
matrix = calculate_levels(data,chunk,sample_rate)
File "spectrum_matrix.py.orig", line 49, in calculate_levels
power = np.reshape(power,(64,chunk/64))
File "/usr/lib/python2.7/dist-packages/numpy/core/fromnumeric.py", line 292, in reshape
return _wrapfunc(a, 'reshape', newshape, order=order)
File "/usr/lib/python2.7/dist-packages/numpy/core/fromnumeric.py", line 56, in _wrapfunc
return getattr(obj, method)(*args, **kwds)
ValueError: cannot reshape array of size 2048 into shape (64,64)

Note that I had renamed the original spectrum_matrix.py to spectrum_matrix.py.orig because we started messing with it. Actually, I pretty much get the same error on the file that works; it’s just that I get it at the end of the LED show, not immediately.

Superficially, the two files differ somewhat in their recording format:

$ file ~/voice.wav moo.wav

/home/pi/voice.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, mono 44100 Hz
moo.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, stereo 32000 Hz

I played the voice.wav on a Windows PC – it played just fine. Just a little soft.

So what’s the essential difference between the two files? Well, something that jumps out is that the one is mono, the other stereo. Can we somehow test for that? Yes! I made the simplest possible conversion af a mono to a stereo file with the following ffmpeg command:

$ ffmpeg -i ~/voice.wav -ac 2 converted.wav

$ file converted.wav


converted.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, stereo 44100 Hz

I copy converted.wav to test.wav and re-run spectrum_matrix.py. This time it works!

Not sure how my friend produced his wave file. But I want to make one on my own. He had plugged a USB microphone into the RPi. I have done research somewhat related to this – publishing a livestream to Youtube, audio only, video grayed out. That’s in this post: https://drjohnstechtalk.com/blog/2019/04/live-stream-to-youtube-from-a-raspberry-pi-webcam/ So I am not afraid to se ffmpeg any longer. So I created this tiny script, record.sh, with my desired arguments:

                    
#!/bin/sh
# see my own post, https://drjohnstechtalk.com/blog/2019/04/live-stream-to-youtube-from-a-raspberry-pi-webcam/
ffmpeg \
-thread_queue_size 4096 \
-f alsa -i plughw:1,0 \
-ac 2 \
/tmp/ffmpeg.wav

And I ran it while speaking loudly into the mic. It ran OK. The output file comes out as

test.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, stereo 48000 Hz

And…it plays with the LEDs dancing. Great.

Audio: LED responds to live input

My friend wants the LED to respond to live input such as his stereo at home. Being a terrible python programmer but at least middling linux techie, I see a way to accomplish it without his having to touch the sample program by employing an old Unix trick: named pipes. So I create this script, drjexample.sh which combines all the knowledge we gained above into one simple script:

                    

#!/bin/sh
# DrJ 6/21
# make the LED react to live sounds by use of a USB microphone
# I am too lazy to look up how to make the python program read from STDIN so i will just
# make the equivalent thing by creating test.wav as a nmed pipe. It's an old linux trick.

rm test.wav; mkfifo test.wav

# background the python program. It will patiently wait for input
sudo python spectrum_matrix.py &

# Now run ffmpeg
# see my own post, https://drjohnstechtalk.com/blog/2019/04/live-stream-to-youtube-from-a-raspberry-pi-webcam/
ffmpeg \
-thread_queue_size 4096 \
-f alsa -i plughw:1,0 \
-ac 2 \
-y \
test.wav

So a named pipe is just that. Instead of the pipe character we know and love, you coordinate process output from the first process with process input of the second process by way of this special file. The operating system does all the hard work. But it works just as though you had used the | character.

Best of all, this script actually works, to wit, the LED is now responding to live input. I see it jump when I say test into the microphone. Unknown to me is if it will play for extended periods of time – it would be easy for one process to output faster than the other can input for instance, so a backlog builds up. The responsiveness is good, I would guess around no more than 200 ms lag.

Equipment

We used the equipment from this post, except the Firebeetle. You know, that’s just another reason I consider that post to be a sloppy effort. Who lists a piece of equipment that they don’t use?? And again, next time I would rather search for an LED display from Adafruit. We use an RPi 3 and installed the image on a micro SD card with the new-ish Raspberry Pi imager, which works just great: Introducing Raspberry Pi Imager, our new imaging utility – Raspberry Pi

Oh, plus the soldering iron and solder. And a multi-colored ribbon cable with female couplers at one end and a 2×8 connector on the other. Not sure if that came with the LED or not since I didn’t order it.

Our power supply is about 5 amps and plugs into the hat. We do not need power for the RPi.

References and related

This post makes it seem like a walk in the park. Our experience is not so much. Raspberry Pi Audio Spectrum Display – Hackster.io

People seem to like this Raspberry Pi photo frame post I did which draws photos from your Google drive. https://drjohnstechtalk.com/blog/2020/12/raspberry-pi-photo-frame-using-your-pictures-on-your-google-drive/

Introducing Raspberry Pi Imager, our new imaging utility – Raspberry Pi – for putting the operating system formerly known as Raspbian onto a micro SD card.

test.wav (Use this moo wav file and rename to test.wav): http://soundbible.com/grab.php?id=1778&type=wav

Useful ffmpeg commands: 20+ FFmpeg Commands For Beginners – OSTechNix

How I figured out hot to livestream audio to YouTube without video from a RPi using ffmpeg is documented here: https://drjohnstechtalk.com/blog/2019/04/live-stream-to-youtube-from-a-raspberry-pi-webcam/

Github project for this effort (not completely working as of yet):

Categories
Admin Firewall Proxy

Checkpoint SYN Defender: what you don’t know can hurt you

Intro

Our EDI group hails me last Friday and says they can’t reach their VANs, or at best intermittently. What to do, what to do… I go on the offensive and say they have to stop using FTP (and that’s literal FTP, not sftp, not FTPs, just plain old FTP), it’s been out of date for at least 15 years.

But that wasn’t really helping the situation, so I had to dig a lot deeper. And frankly, I was coincidentally having intermittent issues with my scripted speedtests. Could the two be related?

The details

To be continued, hopefully.

References and related

VAN: Value Added Network

Categories
Admin Network Technologies

The IT Dective Agency: someone stole my switch port

Intro

A complex environment produces some too-strange-to-be-true type of issues. Yesterday was one of those days. Let me try to set this up like a script from a play.

The setting

A non-descript server room somewhere in the greater New York City area.

The equipment

A generic security appliance we’ll call ThousandEyes PX, just to make up a name.

Cisco Nexus 7K plus a FEX

The players

Dr John – the protagonist

PCT – a generic network vendor

Florence Ranjard – an admin of ThousandEyes PX in France

Shake Abel – a server room resource in PA

Cloud Johnson – someone in Request Management

Bill Otto – a network guy at heart, forced to deal with his now vendor-managed network via ITIL

The processes

ITIL – look it up

Scene 1

An email from Dr John….

Hi Bill,

Thanks.

Well that’s messed up, as they say. I wouldn’t believe it if I hadn’t seen it for myself. Someone, “stole” our port and assigned it to a different device on a different vlan – despite the fact that it was in active use!

I guess I will try to “steal” it back, assuming I can find the IT Catalog article, or maybe with the help of Cloud.

Fortunately I have console access to the Fireeye. I artificially introduced traffic, which I see reflected in the port statistics. So I know the ThousandEyes is still connected to this port, despite the wrong vlan and description.

Regards,

Dr John

Scene 2

One Week earlier

Siting at home due to Covid, Florence realizes she can no longer access the management port of her group’s ThousandEyes security appliance located in another continent. She beings to investigate and even contacts the vendor…

Scene 3

This exciting script is to be contiued, hopefully

Categories
Admin Linux Network Technologies

Speedtest automation: what they don’t tell you

Intro

I began to implement the autmoation of speedtest checks. I was running the jobs every 10 minutes, but we noticed something flaky in the results. On the hour and on the half hour the tests seemed to be garbage. What’s going on?

Our findings

Well, if you use a scheduler to run a speedtest every 10 minutes, it will start exactly on the hour and exactly on the half-hour, amongst other start times. We were running it eight times to test eight different paths. Only the last two were returning reliable results. The early ones were throwing errors. So I introduced an offset to run the jobs at 2,12,22,32,42,52 minutes. And with this offset, the results became much more reliable.

The inevitable conclusion is that too many other people are running tests exactly on the hour and half hour. A single run takes roughly 30 seconds to complete. And it must be that the servers which speedtest rely on are simply overwhelmed and refuse to do more tests.

References and related

There is a linux script written in python that implements the full speedtest. https://pypi.org/project/speedtest-cli/ It really works, which is cool.

But as well there is a RPM package you can get from the speedtest site itself.

nperf.com looks like a better test than speedtest. I’m going to see if it can be scripted.

Categories
Network Technologies

When is a switch not a switch: when it’s a Cisco Nexus

Intro

I don’t think we ask a lot of our switches. A packet comes in on this port and goes out on this other port. That sort of thing. But, apparently, when the switch is a Cisco Nexus, that is asking too much. Maybe it will go to that other port. Let’s see, it depends who sent it. So then again, maybe not. So maybe device A can ping device B. Device B cannot ping device A. But it can ping device C and device C can ping A. Or maybe Jack can ping device 1 but not device 2 on the same subnet. Yet Jill can ping device 2 but not device 1!

Yes. Those are not theoretical examples, but, sadly, actual examples lifted from recent massive debugging sessions I’ve participated in, which, eventually, focused on the Nexus switch not treating all traffic as it should. Another example: larger packets were not getting through on the same vlan.

Sometimes the Cisco support engineer is too clever by half. We had one find a few errors on supervisor board 5 so we switched to board 6. That did nothing. We finally noticed that all problems were related to FEXes connected to slot 8. As a test we plugged a FEX into a different slot and, voila, things began to work better. But the Cisco guy did not see any errors on slot 8.

Well, you only get the same Cisco engineer for a limited time. Then their shift turns over and you get to explain the whole problem all over again to the next one. Yeah, supposedly they’re briefed, but ni reality not so much. So finally the second engineer was a little more pragmatic than the first too-clever guy. This is a quote from her: “I do not see errors on that module, but logically, it has to be the problem.” This of course is after we presented all the evidence to her. So we ordered an RMA, replaced that board and yes everything began to work.

I’ve been involved in two such massive debugging session over the last four months. No one from the Cisco side is saying it, but I will. These Nexus switches define flows behind the scenes. They can probably do some very clever things with these flows. But it is no longer a simple switch. And, sadly, when the flows don’t all work, no one at Cisco is prepared to look for that issue or even consider it as a possibility. They look for obscure errors. And, heaven forbid, they are, I guess, incapable of proving to themselves their switch as at fault – eating packets – by doing what any first semester network class would have, namely, mirroring some of the ports and examining the traffic for themselves. It is instead up to the customer to prove the switch is at fault.

So in my first debugging session, which lasted about 16 hours, Cisco did not really find the errors that would lead them to believe slot 8 was a problem. Yet its replacement fixed everything. In fairness, in the second debugging session, which only lasted five hours or so, they did see errors which justified a replacement. But at no time did they ever use the word flow or offer in detail how the errors they saw could have produced the weird results we were seeing (that was the Jack and Jill example from above).

Conclusion

We guys who run servers would like to think a switch is a switch is a switch. But Cisco is requiring us to up our game, even if they don’t up theirs. Their Nexus switches absolutely can eat some of your network traffic while passing other over the same ports. I’d like to call that flows, even if they refuse to use that term.

Categories
Admin Network Technologies

What is the one DHCP problem managed network providers never recognize?

Answer: the one where their switch eats the DHCPDISCOVER packets. And the zmzaing thing is they never learn. And the second amazing thing is that they actually don’t apply the most basic networing debugging techniques when such a problem occurs. I’m talking your basic, DHCPDISCOVER packet goes to yuor switch, same DHCPDISCOVER packet never arrives to the DHCP server on same switch. We know it to be the case, but, to help convince yourself that your switch is eating the pakcets, do networky things like create a span port of the DHCP server’s port to prove to yourself that no DHCP requests are coming in. And yet, they are never prepared to do that, to propose that. So instead indirect proxies are used to draw the conclusion.

I’ve been involved in three of four such debugging sessions. They take hours. I took notes when it happened again this weekend. I guess that setup is pretty typical of how it plays out. A data center was moved, including a DHCP server. The new data center has a MAN network to the old one. All IPs were preserved. When they turned on the moved DHCP server DHCP lease were no longer getting handed out. In fact it was worse than that. With the moved DHCP sever turned off, most DHCP leases were working. But with it on, that’s when things really began to go south!

Here’s the switch port they noted for the iDRAC:

sh run int gi1/0/24
Building configuration…
Current configuration : 233 bytes
!
interface GigabitEthernet1/0/24
description --- To-cnshis01-iDRAC - iDRAC
switchport access vlan 202
switchport mode access
logging event link-status
speed 100
duplex full
spanning-tree portfast
ip dhcp snooping trust
end

The first line of course if the IOS command. OK, so they had that on the iDRAC, right. But on the actual server port they had this:

sh run int gi1/0/23
Building configuration…
Current configuration : 258 bytes
!
interface GigabitEthernet1/0/23
description --- To-cnshis01-Gb1 - Gb1
switchport access vlan 202
switchport mode access
logging event link-status
spanning-tree portfast
service-policy input PMAP_COS_REMARK_IN
service-policy output PMAP_COS_OUT
end

I basically told them cheekily up front that this is usually a network switch problem and that they have to play with the DHCP snooping enable setting.

And I have to say that the usual hours of debugging were short-circuited this time as they seemed to believe me, and simply experimented by adding

ip dhcp snooping trust

to the DHCP server’s main port. We immediately began seeing DHCPDISCOVER pakcets come in to the DHCP server, and the team testified that people were getting leases.

Final mystery explained

Now why were things behaving really badly – no leases – when the DHCP server was up but no DHCPDISCOVER requests were getting to it? I have the explanation for that as well. You see theer is a standby DHCP server which is designed for failure of the primary DHCP server. But not for this type of failure! That’s right. There is an out-of-band (by that I mean not carried over DHCP ports like UDP port 67) communication between standby and primary which tells the standby Hey, although you got this DHCPDISCOVER request, ignore it becasue the primary is active and will serve it! And meanwhile, as we have said, the primary wasn’t getting the requests at all. Upshot: no one gets leases.

Just to mention it

My second-to-last debugging session of this sort was a little different. There they mentioned that there was a “global setting” which governed this DHCP snooping on the switch. So they had to do something with that (enable or disable or something). So there was no issue with the individual switch ports. For me that’s just a variation on the same theme.

What’s the idea behind this feature?

Having done a total of zero minutes of research on the topic, I will anyway weigh in with my opinion! Suppose someone comes along and plugs in a consumer grade home router into your network. It’s probably going to act as a rogue DHCP server. Imagine the fun trying to debug that situation? We’ve all been there… These rogue devices are probably fairly common. So if your corporate switch doesn’t suppress certain DHCP packets from ports where they are not expected, then this rogue device will begin to take down your subnet and totally bewilder everyone. I imagine this setting that is the topic of this blog post stems from trying to suppress all unknown DHCP packets in advance. Its just that sometimes the setting is taken too far and, e.g., a firewall which relays DHCP requests is also getting its DHCP packets suppressed.

Conclusion

I normally would have presented this as part of my IT Detective series. But I feel this is more like a lament about the sad state of affairs with our network providers. And though I’ve seen this issue about four times in the past 12 months, they always act like they have no idea what we’re talking about. They’ve never encountered this problem. They have no idea how to fix it. And they have no idea how to further debug it.. What steps does the customer wish?

References and related

Juat because I mentioned it, here’s on of those IT Detective Agency blog posts: The IT Detecive Agency: web site not accessible

Categories
Admin Web Site Technologies

TCL iRule program with comments for F5 BigIP

Intro

A publicity-adverse colleague of mine wrote this amazing program. I wanted to publish it not so much for what it specifically does, but as well for the programming techniques it uses. I personally find i relatively hard to look up concepts when using TCL for an F5 iRule.

Program Introduction

Test

                    
# RULE_INIT is executed once every time the iRule is saved or on reboot. So it is ideal for persistent data that is shared accross all sessions.
# In our case it is used to define a template with some variables that are later substituted

when RULE_INIT {
# "static" variables in iRules are global and read only. Unlike regular TCL global variables they are CMP-friendly, that means they don't break the F5 clustered multi-processing mechanism. They exist in memory once per CMP instance. Unlike regular variables that exist once per session / iRule execution. Read more about it here: https://devcentral.f5.com/s/articles/getting-started-with-irules-variables-20403
#
# One thing to be careful about is not to define the same static variable twice in multiple iRules. As they are global, the last iRule saved overwrites any previous values.
# Originally the idea was to load an iFile here. That's also the main reason to even use RULE_INIT and static variables. The reasoning was (and I don't even know if this is true), that loading the iFile into memory once would have to be more efficient than to do it every time the iRule is executed. However, it is entirely possible that F5 already optimized iFiles in a way that loads them into memory automatically at opportune times, so this might be completely unnecessary.
# Either way, as you can tell, in the end I didn't even use iFiles. The reason for that is simply visibility. iFiles can't be easily viewed from the web UI, so it would be quite inconvenient to work with.
# The template idea and the RULE_INIT event stayed, even though it doesn't really serve a purpose, except maybe visually separating the templates from the rest of the code.
#
# As for the actual content of the variable: First thing to note is the use of  {} to escape the entire string. Works perfectly, even though the string itself contains braces. TCL magic.
# The rest is just the actual PAC file, with strategically placed TCL variables in the form of $name (this becomes important later)

            set static::pacfiletemplate {function FindProxyForURL(url, host)
{
            var globalbypass = "$globalbypass";
            var localbypass = "$localbypass";
            var ceglobalbypass = "$ceglobalbypass";
            var zpaglobalbypass = "$zpaglobalbypass";
            var zscalerbypassexception = "$zscalerbypassexception";

            var bypass = globalbypass.split(";").concat(localbypass.split(";"));
            var cebypass = ceglobalbypass.split(";");
            var zscalerbypass = zpaglobalbypass.split(";");
            var zpaexception = zscalerbypassexception.split(";");

            if(isPlainHostName(host)) {
                        return "DIRECT";
            }

            for (var i = 0; i < zpaexception.length; ++i){
                        if (shExpMatch(host, zpaexception[i])) {
                                   return "PROXY $clientproxy";
                        }
            }

            for (var i = 0; i < zscalerbypass.length; ++i){
                        if (shExpMatch(host, zscalerbypass[i])) {
                                   return "DIRECT";
                        }
            }

            for (var i = 0; i < bypass.length; ++i){
                        if (shExpMatch(host, bypass[i])) {
                                   return "DIRECT";
                        }
            }

            for (var i = 0; i < cebypass.length; ++i) {
                        if (shExpMatch(host, cebypass[i])) {
                                   return "PROXY $ceproxy";
                        }
            }

            return "PROXY $clientproxy";
}
}

            set static::forwardingpactemplate {function FindProxyForURL(url, host)
{
            var forwardinglist = "$forwardinglist";
            var forwarding = forwardinglist.split(";");

            for (var i = 0; i < forwarding.length; ++i){
                        if (shExpMatch(host, forwarding[i])) {
                                   return "PROXY $clientproxy";
                        }
            }

            return "DIRECT";
}
}
}

# Now for the actual code (executed every time a user accesses the vserver)
when HTTP_REQUEST {
    # The request URI can of course be used to differentiate between multiple PAC files or to restrict access.
    # So can basically any other request attribute. Client IP, host, etc.
            if {[HTTP::uri] eq "/proxy.pac"} {

                        # Here we set variables with the exact same name as used in the template above.
                        # In our case the values come from a data group, but of course they could also be defined
                        # directly in this iRule. Using data groups makes the code a bit more compact and it
                        # limits the amount of times anyone needs to edit the iRule (potentially making a mistake)
                        # for simple changes like adding a host to the bypass list
                        # These variables are all set unconditionally. Of course it is possible to set them based
                        # on for example client IP (to give different bypass lists or proxy entries to different groups of users)
                        set globalbypass [ class lookup globalbypass ProxyBypassLists ]
                        set localbypass [ class lookup localbypassEU ProxyBypassLists ]
                        set ceglobalbypass [ class lookup ceglobalbypass ProxyBypassLists ]
                        set zpaglobalbypass [ class lookup zpaglobalbypass ProxyBypassLists ]
                        set zscalerbypassexception [ class lookup zscalerbypassexception ProxyBypassLists ]
                        set ceproxy [ class lookup ceproxyEU ProxyHosts ]

                        # Here's a bit of conditionals, setting the proxy variable based on which virtual server the
                        # iRule is currently executed from (makes sense only if the same iRule is attached to multiple
                        # vservers of course)
                        if {[virtual name] eq "/Common/proxy_pac_http_90_vserver"} {
                            set clientproxy [ class lookup formauthproxyEU ProxyHosts ]
                        } elseif {[virtual name] eq "/Common/testproxy_pac_http_81_vserver"} {
                            set clientproxy [ class lookup testproxyEU ProxyHosts]
                        } elseif {[virtual name] eq "/Common/proxy_pac_http_O365_vserver"} {
                            set clientproxy [ class lookup ceproxyEU ProxyHosts]
                        } else {
                            set clientproxy [ class lookup clientproxyEU ProxyHosts ]
                }

                        # Now this is the actual magic. As noted above we have now set TCL variables named for example
                        # $globalbypass and our template includes the string "$globalbypass"

                        # What we want to do next is substitute the variable name in the template with the variable values
                        # from the code.
                        # "subst" does exactly that. It performs one level of TCL execution. Think of "eval" in basically
                        # any language. It takes a string and executes it as code.
                        # Except for "subst" there are two in this context very useful parameters: -nocommands and -nobackslashes.
                        # Those prevent it from executing commands (like if there was a ping or rm or ssh or find or anything
                        # in the string being subst'd it wouldn't actually try to execute those commands) and from normalizing
                        # backslashes (we don't have any in our PAC file, but if we did, it would still work).
                        # So what is left that it DOES do? Substituting variables! Exactly what we want and nothing else.
                        # Now since the static variable is read only, we can't do this substitution on the template itself.
                        # And if we could it wouldn't be a good idea, because it is shared accross all sessions. So assuming
                        # there are multiple versions of the PAC file with different proxies or bypass lists, we would
                        # constantly overwrite them with each other.
                        # The solution is simply to save the output of the subst in a new local variable that exists in
                        # session context only.
                        # So from a memory point of view the static/global template doesn't really gain us anything.
                        # In the end we have the template in memory once per CMP and then a substituted copy of the template
                        # once per session. So as noted earlier, could've probably just removed the entire RULE_INIT block,
                        # set the template in session context (HTTP_REQUEST event) and get the same result,
                        # maybe even slightly more efficient.
                        set pacfile [subst -nocommands -nobackslashes $static::pacfiletemplate]

                        # All that's left to do is actually respond to the client. Simple stuff.
                        HTTP::respond 200 content $pacfile "Content-Type" "application/x-ns-proxy-autoconfig" "Cache-Control" "private,no-cache,no-store,max-age=0"
            # In this example we have two different PAC files with different templates on different URLs
            # Other iRules we use have more differentiation based on client IP. In theory we could have one big iRule
            # with all the PAC files in the world and it would still scale very well (just a few more if/else or switch cases)
            } elseif { [HTTP::uri] eq "/forwarding.pac" } {
                set clientproxy [ class lookup clientproxyEU ProxyHosts]
                set forwardinglist [ class lookup forwardinglist ProxyBypassLists ]
            set forwardingpac [subst -nocommands -nobackslashes $static::forwardingpactemplate]
            HTTP::respond 200 content $forwardingpac "Content-Type" "application/x-ns-proxy-autoconfig" "Cache-Control" "private,no-cache,no-store,max-age=0"
            } else {
                # If someone tries to access a different path, give them a 404 and the right URL
                HTTP::respond 404 content "Please try http://webproxy.drjohns.com/proxy.pac" "Content-Type" "text/plain" "Cache-Control" "private,no-cache,no-store,max-age=0"
            }
}

To be continued...

Categories
Consumer Tech

Consumer Tech: Netflix video and audio out of sync using Firestick

Intro

While watching Mad Men last night on IMDB we saw a terribly annoying audio delay – probably about three seconds after the video. Then it cuts to the commercials and they were perfectly in sync. Then back to the show – still a 2 – 3 -second delay. Is it the brand of TV? We use a Firestick plus a Samsung LCD TV.

The solution

Well, my first inclination was to look for audio settings on either the TV or the Amazon Firestick which might be set to delay audio. I had such a setting on an old sound system, though I think it was only for a sub-second delay. But, there are no such settings on either Firestick or Samsung TV, so that’s not it.

An Internet search proved not too useful.

What I eventually realized – the in-sync commercials was a hint – is that I could rewind the show a tiny bit, and that might pop it back into sync. And…it did!

How it happens

I think it happens when I pause a show one night, to return to it a later time. It remembers where I was, which is great. But it sometimes gets out of sync this way. I have seen this with Netflix and IMDB. The common element seems to be the Firestick.

Categories
Raspberry Pi

Raspberry Pi photo frame using the pictures on your Google Drive II

Intro

This is basically the same post as my previous post, Raspberry Pi photo frame using your pictures on your Google Drive. The are several ideas I am introducing in this treatment.

  • better time separation of the photos for a more meaningful viewing
  • smart resizing of photos to effectively enlarge narrow photos
  • analysis of photos for date and time
  • analysis of photos for GPS info, converting to city and even address!
  • build up of alternate slideshow which includes date, file, folder and location information embedded at the bottom of every picture
  • quality control check to make sure file is an actual JPEG
  • tiny thumbnail pictures are skipped
  • rotating slideshow refreshes either daily or every three days
  • pictures of documents are excluded (future enhancement)
  • a nice picture is displayed when the slideshow is refreshed

Mostly for my own sake, I’ve re-named most of the relevant files and re-worked some as well in order to avoid name conflicts.

I find this treatment is pretty robust and can withstand a lot of errors and mistakes.

So let’s get started.

The easier way to get the files

Because there are now so many files – 18 at last count! – I’ve bundled them all into a tar file. So to get them all in one fell swoop do this.

$ wget https://drjohnstechtalk.com/blog/downloads/photoFrameII.tar

$ tar xvf photoFrameII.tar

Then skip down to the section of this post called crontab entries, which you will still need to do.

But because I think the scripts could be useful for other projects as well, I’m including them here in their entirety in the following section.

The files

The brains of the thing is master3.sh.

master3.sh

                    

#!/bin/sh
# DrJ 1/2021
# call this from cron once a day to refesh random slideshow once a day
NUMFOLDERS=20
DEBUG=1
HOME=/home/pi
RANFILE=$HOME/random.list
REANFILE=$HOME/rean.list
DISPLAYFOLDER=$HOME/Pictures
DISPLAYFOLDERTMP=$HOME/Picturestmp
EXIFTMP=$HOME/EXIFtmp
EXIF=$HOME/EXIF
TXTDIR=$HOME/picstxt
MSHOW=$HOME/mediashow
MSHOW2=$HOME/mediashowtmp2
MSHOW3=$HOME/mediashowtmp3
SLEEPINTERVAL=1
STARTFOLDER="MaryDocs/Pictures and videos"

echo "Starting master process at "`date`


cd $HOME

rm -rf $DISPLAYFOLDERTMP
mkdir $DISPLAYFOLDERTMP

#listing of all Google drive files starting from the picture root
# this takes a few minutes so we may want to skip for debugging
if [ "$1" = "skip" ]; then
  if [ $DEBUG -eq 1 ]; then echo SKIP Listing all files from Google drive; fi
else
  if [ $DEBUG -eq 1 ]; then echo Listing all files from Google drive; fi
  rclone ls remote:"$STARTFOLDER" > files
# filter down to only jpegs, lose the docs folders and the tiny JPEGs
  if [ $DEBUG -eq 1 ]; then echo Picking out the JPEGs and losing the small images; fi
  egrep '\.[jJ][pP][eE]?[gG]$' files |awk '$1 > 11000 {$1=""; print substr($0,2)}'|grep -i -v /docs/ > jpegs.list
fi

# check if we got anything. If our Internt dropped there may have been a problem, for instance
flines=`cat files|wc -l`
if [ $flines -lt 60 ]; then
  echo "rclone did not produce enough files. Check your Internet setup and rclone configuration."
  echo Only $flines files in the file listing - not enough - so pausing 60 seconds and starting over... at `date`
# start a new job and kill ourselves!
  nohup $HOME/master3.sh > master.log 2>&1 &
  exit
fi

# throw NUMFOLDERS or so random numbers for picture selection, select triplets of photos by putting
# names into a file
if [ $DEBUG -eq 1 ]; then echo "\nGenerate random filename triplets"; fi
./random-files3.pl -f $NUMFOLDERS -j jpegs.list -r $RANFILE

# copy over these 60 jpegs
if [ $DEBUG -eq 1 ]; then echo "\nCopy over these random files"; fi
cat $RANFILE|while read line; do
  if [ $DEBUG -eq 1 ]; then echo filepath is $line; fi
  rclone copy remote:"${STARTFOLDER}/$line" $DISPLAYFOLDERTMP
  sleep $SLEEPINTERVAL
done

# do a re-analysis to push pictures further apart in time
if [ $DEBUG -eq 1 ]; then echo "\nRe-analyzing pictures for their timestamps"; fi
cd $DISPLAYFOLDERTMP; $HOME/reanalyze.pl

# copy over just the new pictures that we determined were needed
if [ $DEBUG -eq 1 ]; then echo "\nCopy over the needed replacement files"; fi
cat $REANFILE|while read line; do
  if [ $DEBUG -eq 1 ]; then echo filepath is $line; fi
  rclone copy remote:"${STARTFOLDER}/$line" $DISPLAYFOLDERTMP
  sleep $SLEEPINTERVAL
done

# QC: toss out the pics which are not actually JPEGs
if [ $DEBUG -eq 1 ]; then echo "\nQC: Toss out the pics which are not actually JPEGs"; fi
cd $DISPLAYFOLDERTMP; ../QC.pl

# save EXIF metadata for later
if [ $DEBUG -eq 1 ]; then echo "\nSave EXIF metadata for later"; fi
cd $DISPLAYFOLDERTMP; $HOME/get-all-EXIF.sh
rm -rf $EXIF;mv $EXIFTMP $EXIF

# analyze EXIF info to extract most interesting things
if [ $DEBUG -eq 1 ]; then echo "\nAnalyze EXIF data"; fi
rm -rf $TXTDIR; $HOME/analyze.sh

# rotate pics as needed
if [ $DEBUG -eq 1 ]; then echo "\nRotate the pics which need it"; fi
cd $DISPLAYFOLDERTMP; $HOME/rotate-as-needed.sh

# resize pics
if [ $DEBUG -eq 1 ]; then echo "\nSize all pics to the display size"; fi
$HOME/resize.sh

# create text info + images
if [ $DEBUG -eq 1 ]; then echo "\nEmbed pic info"; fi
$HOME/embedpicinfo.sh

cd ~

# kill any old slideshow
if [ $DEBUG -eq 1 ]; then echo Killing old fbi slideshow; fi
sudo pkill -9 -f fbi
pkill -9 -f m3.pl

# remove old pics
if [ $DEBUG -eq 1 ]; then echo Removing old pictures; fi
rm -rf $DISPLAYFOLDER

mv $DISPLAYFOLDERTMP $DISPLAYFOLDER
cp $MSHOW3 $MSHOW

touch refresh

#run looping fbi slideshow on these pictures
if [ $DEBUG -eq 1 ]; then echo Start "\nfbi slideshow in background"; fi
cd $DISPLAYFOLDER ; nohup ~/m3.pl  >> ~/m3.log 2>&1 &

if [ $DEBUG -eq 1 ]; then echo "And now it is "`date`; fi

random-files3.pl

                    
#!/usr/bin/perl
use Getopt::Std;
my %opt=();
getopts("c:df:j:r:",\%opt);
$nofolders = $opt{f} ? $opt{f} : 20;
$DEBUG = $opt{d} ? 1 : 0;
$cutoff = $opt{c} ? $opt{c} : 5;
$cutoffS = 60*$cutoff;
$jpegs = $opt{j} ? $opt{j} : "jpegs.list";
$ranpicfile = $opt{r} ? $opt{r} : "jpegs-random.list";
print "d,f,j,r: $opt{d}, $opt{f}, $opt{j}, $opt{r}\n" if $DEBUG;
$mshowt = "mediashowtmp";
open(JPEGS,$jpegs) || die "Cannot open jpegs listing file $jpegs!!\n";
@jpegs = <JPEGS>;
# remove newline character
$nopics = chomp @jpegs;
open(RAN,"> $ranpicfile") || die "Cannot open random picture file $ranpicfile!!\n";
for($i=0;$i<$nofolders;$i++) {
  $t = int(rand($nopics-2));
  print "random number is: $t\n" if $DEBUG;
# a lot of our pics follow this naming convention
# 20160831_090658.jpg
  ($date,$time) = $jpegs[$t] =~ /(\d{8})_(\d{6})/;
  if ($date) {
    print "date, time: $date $time\n" if $DEBUG;
# ensure neighboring picture is at least five minutes different in time
    $iPO = $iP = $diff = 1;
    ($hr,$min,$sec) = $time =~ /(\d\d)(\d\d)(\d\d)/;
    $secs = 3600*$hr + 60*$min + $sec;
    print "Pre-pic logic\n";
    while ($diff < $cutoffS) {
      $iP++;
      $priorPic = $jpegs[$t-$iP];
      $Pdate = $Ptime = 0;
      ($Pdate,$Ptime) = $priorPic =~ /(\d{8})_(\d{6})/;
      ($Phr,$Pmin,$Psec) = $Ptime =~ /(\d\d)(\d\d)(\d\d)/;
      $Psecs = 3600*$Phr + 60*$Pmin + $Psec;
      print "hr,min,sec,Phr,Pmin,Psec: $hr,$min,$sec,$Phr,$Pmin,$Psec\n" if $DEBUG;
      $diff = abs($secs - $Psecs);
      print "diff: $diff\n" if $DEBUG;
# end our search if we happened upon different dates
      $diff = 99999 if $Pdate ne $date;
    }
# post-picture logic - same as pre-picture
    print "Post-pic logic\n";
    $diff = 0;
    while ($diff < $cutoffS) {
      $iPO++;
      $postPic = $jpegs[$t+$iPO];
      $Pdate = $Ptime = 0;
      ($Pdate,$Ptime) = $postPic =~ /(\d{8})_(\d{6})/;
      ($Phr,$Pmin,$Psec) = $Ptime =~ /(\d\d)(\d\d)(\d\d)/;
      $Psecs = 3600*$Phr + 60*$Pmin + $Psec;
      print "hr,min,sec,Phr,Pmin,Psec: $hr,$min,$sec,$Phr,$Pmin,$Psec\n" if $DEBUG;
      $diff = abs($Psecs - $secs);
      print "diff: $diff\n" if $DEBUG;
# end our search if we happened upon different dates
      $diff = 99999 if $Pdate ne $date;
    }
  } else {
    $iP = $iPO = 2;
  }
  $priorPic = $jpegs[$t-$iP];
  $Pic = $jpegs[$t];
  $postPic = $jpegs[$t+$iPO];
  print RAN qq($priorPic
$Pic
$postPic
);
# this is how we'll preserve the order of the pictures. ls -1 often gives a different order!!
($p1) = $priorPic =~ /([^\/]+)$/;
($p2) = $Pic =~ /([^\/]+)$/;
($p3) = $postPic =~ /([^\/]+)$/;
print "p1 p2 p3: $p1 $p2 $p3" if $DEBUG;
$picsinorder .= $p1 . "\0" . $p2 . "\0" . $p3 . "\0";
}
close(RAN);
open(MS,">$mshowt") || die "Cannot open mediashow file $mshowt!!\n";
print MS $picsinorder;
close(MS);
print "pics in order: $picsinorder\n" if $DEBUG;

reanalyze.pl

                    

#!/usr/bin/perl
use Getopt::Std;
my %opt=();
#
# assumption is that we are runnin this from a directory containing pictures
$tier1 = 100; $tier2 = 200; $tier3 = 300; # secs
$DEBUG = 1;
$HOME = "/home/pi";
# pics are here
$pNames = "$HOME/reanpicnames";
$ranfile = "$HOME/random.list";
$reanfile = "$HOME/rean.list";
$origfile = "$HOME/jpegs.list";
$mshowt = "$HOME/mediashowtmp";
$mshow2 = "$HOME/mediashowtmp2";

open(REAN,">$reanfile") || die "Cannot open reanalyze file $reanfile!!\n";
$ms = `cat $mshowt`;
print "Original media show: $ms\n" if $DEBUG;
@lines = split('\0',$ms);
$Pdate = $Phr = $Pmin = $Psec = 0;
$diff = 9999;
for($i=0;$i<@lines;$i++){
  $date = 0;
  $secs = $ymd = 0;
  $_ = $lines[$i];
  $file = $_;
# ignore pictures with names like 20130820_180050.jpg
  next if /\d{8}_\d{4}/;
  open(ANAL,"$HOME/getinfo.py \"$file\"|") || die "Cannot open file: $file!!\n";
  print "filename: $file\n" if $DEBUG;
  while(<ANAL>){
#extract date and time from remaining pictures, if possible
# # DateTimeOriginal = 2018:08:18 20:16:47
#    print STDERR "DATE: $_" if $DEBUG;
if (/date/i && $date++ < 1) {
   print "date match in getinfo.pyoutput: $_" if $DEBUG;
   ($ymd,$hr,$min,$sec) = /(\d{4}:\d\d:\d\d) (\d\d):(\d\d):(\d\d)/;
   $secs = 3600*$hr + 60*$min + $sec;
   print "file,secs,ymd,i: $file,$secs,$ymd,$i\n" if $DEBUG;
   $YMD[$i] = $ymd;
   $SECS[$i] = $secs;
}
} # end loop over analysis of this pic
} # end loop over all files
# now go over that
$oldfolder = 0;
for($i=1;$i<@lines;$i++){
 $folder = int($i/3) + 1;
 next unless $folder != $oldfolder;
   print "analyzing results. folder no. $folder\n" if $DEBUG;
# analyze pics in triplets
# center pic
   $j = ($folder - 1)*3 + 1;
   for ($o=-1;$o<2;$o+=2){
     $k=$j+$o;
     print "j,k,o: $j,$k,$o\n" if $DEBUG;
     next unless $SECS[$j] > 0 && $YMD[$j] == $YMD[$k] && $YMD[$j] > 0;
     print "We have non-0 dates we're dealing with\n" if $DEBUG;
     $file = $lines[$k];
     chomp($file);
     $diff = abs($SECS[$j] - $SECS[$k]);
     print "diff: $diff\n" if $DEBUG;
     next unless $diff < $tier3;
# the closer the files are together the more we push away
     $bump = 1 if $diff < $tier3;
     $bump = 2 if $diff < $tier2;
     $bump = 3 if $diff < $tier1;
# get full filepath
     $filepath = `grep \"$file\" $ranfile`;
     chomp($filepath);
# now use that to search within the jpegs file listing
     $prog = $o < 0 ? "head" : "tail";
     $newfilepath = `grep -C$bump "$filepath" $origfile|$prog -1`;
     ($newfile) = $newfilepath =~ /([^\/]+)$/;
     chomp($newfile);
     print "file,filepath,newfile,newfilepath,bump: $file,$filepath,$newfile,$newfilepath,$bump\n" if $DEBUG;
     print REAN $newfilepath;
# we'll get the new pictures over in a separate step to keep this more atomic
     $ms =~ s/$file/$newfile/;
    }
    $oldfolder = $folder;
} # end loop over pics
# print out new mediashow pics in order
print "Printing new mediashow: $ms\n" if $DEBUG;
open(MS,">$mshow2") || die "Cannot open mediashow $mshow2!!\n";
print MS $ms;
close(MS)

QC.pl

                    

#!/usr/bin/perl
# kick out the non-JPEG files - sometimes they creep in
$DEBUG = 1;
$HOME = "/home/pi";
$mshow2 = "$HOME/mediashowtmp2";
$mshow3 = "$HOME/mediashowtmp3";
$ms = `cat $mshow2`;
@pics = split('\0',$ms);
foreach $file (@pics) {
  print "file is $file\n" if $DEBUG;
#DSC00185.JPG: JPEG image data, JFIF standard 1.01...
  $res = `file "$file"|cut -d: -f2`;
  if ($res =~ /JPEG/i){
    print "This file is indeed a JPEG image\n" if $DEBUG;
  } else {
    print "Not a JPEG image! We have to remove this file form the mediashow\n" if $DEBUG;
    $ms =~ s/$file\0//;
  }
}
# print out new mediashow pics in order
print "Printing new mediashow: $ms\n" if $DEBUG;
open(MS,">$mshow3") || die "Cannot open mediashow $mshow3!!\n";
print MS $ms;
close(MS);

get-all-EXIF.sh

                    

#!/bin/sh
# DrJ 1/2021
# preserve EXIF info of all the images because our rotate step removes it
# and we will use it in subsequent steps
# assumption is that our current directory is the one where we want to read files
EXIFTMP=~/EXIFtmp
mkdir $EXIFTMP
ls -1|while read line; do
  echo file is "$line"
  ~/getinfo.py "$line" > $EXIFTMP/"$line"
done

analyze.sh

                    

#!/bin/sh
# DrJ 1/2021
# try to extract date, file and folder name and even GPS info, create jpegs with info
# for each image
# assumption is that are current directory is the one where we want to alter files
HOME=/home/pi
TXTDIR=$HOME/picstxt
# it's assumed EXIF info for each pic has already been extracted and put into EXIF diretory
EXIF=$HOME/EXIF
mkdir $TXTDIR
cd $EXIF
ls -1|while read line; do
  echo file is "$line"
  echo -n "$line"|../analyzeDate.pl > "$TXTDIR/${line}"
  echo -n "$line"|../analyzeGPS.pl >> "$TXTDIR/${line}"
done

rotate-as-needed.sh

                    

#!/bin/sh
# DrJ 12/2020
# some of our downloaded files will be sideways, and fbi doesn't auto-rotate them as far as I know
# assumption is that our current directory is the one where we want to alter files
ls -1|while read line; do
  echo file is "$line"
  o=`~/getinfo.py "$line"|grep -ai orientation|awk '{print $NF}'`
  echo orientation is $o
  if [ "$o" -eq "6" ]; then
    echo "90 clockwise is needed, o is $o"
# rotate and move it
    ~/rotate.py -90 "$line"
    mv rot_"$line" "$line"
  elif [ "$o" -eq "8" ]; then
    echo "90 counterclock is needed, o is $o"
# rotate and move it
    ~/rotate.py 90 "$line"
    mv rot_"$line" "$line"
  elif [ "$o" -eq "3" ]; then
    echo "180 rot is needed, o is $o"
# rotate and move it
    ~/rotate.py 180 "$line"
    mv rot_"$line" "$line"
  fi
done

resize.sh

                    

#!/bin/sh
# DrJ 2/2021
# To combat the RPi's inherent sluggish performance we'll downsize the pictures in advance to save fbi the effort
#
# on the pidisplay fbset gives:
#mode "800x480"
#    geometry 800 480 800 480 32
#    timings 0 0 0 0 0 0 0
#    rgba 8/16,8/8,8/0,8/24
#endmode
displaywidth=`fbset|grep geometry|awk '{print $2}'`
displayheight=`fbset|grep geometry|awk '{print $3}'`

ls -1|while read line; do
  echo file is "$line"
  ~/fancyresize.py $displaywidth $displayheight "$line"
  mv resize_"$line" "$line"
done

embedpicinfo.sh

                    

#!/bin/sh
# DrJ 2/2021
# To combat the RPi's inherent sluggish performance we'll downsize the pictures in advance to save fbi the effort
#
# on the pidisplay fbset gives:
#mode "800x480"
#    geometry 800 480 800 480 32
#    timings 0 0 0 0 0 0 0
#    rgba 8/16,8/8,8/0,8/24
#endmode
displaywidth=`fbset|grep geometry|awk '{print $2}'`
displayheight=`fbset|grep geometry|awk '{print $3}'`

ls -1|while read line; do
  echo file is "$line"
# this will create a new image with same name prepended with txt_
  ~/embedpicinfo.py $displaywidth $displayheight "$line"
done

Auxiliary files

rotate.py

                    

#!/usr/bin/python3
# call with two arguments: degrees-to-rotate and filename
import PIL, os
import sys
from PIL import Image
# first do: pip3 install piexif
import piexif

degrees = int(sys.argv[1])
pic = sys.argv[2]

picture= Image.open(pic)
# see https://github.com/hMatoba/Piexif for piexif writeup
# this method of preserving EXIF info does not always work, and
# causes script to crash when it fails!
##exif_dict = piexif.load(picture.info["exif"])
##exif_bytes = piexif.dump(exif_dict)
## both rotate and preserve EXIF data
##picture.rotate(degrees,expand=True).save("rot_" + pic,"jpeg", exif=exif_bytes)
# rotate (which will blow away EXIF info, sorry...)
picture.rotate(degrees,expand=True).save("rot_" + pic,"jpeg")

getinfo.py

                    

#!/usr/bin/python3
import os,sys
from PIL import Image
from PIL.ExifTags import TAGS

for (tag,value) in Image.open(sys.argv[1])._getexif().items():
        print ('%s = %s' % (TAGS.get(tag), value))

print ('%s = %s' % (TAGS.get(tag), value))

embedpicinfo.py

                    

#!/usr/bin/python3
# from https://auth0.com/blog/image-processing-in-python-with-pillow/
# fonts are described here:
# https://pillow.readthedocs.io/en/stable/reference/ImageDraw.html
from PIL import Image, ImageDraw, ImageFont
import sys, os

width = int(sys.argv[1])
height = int(sys.argv[2])
# for Pidisplay:
#width = 800
#height = 480
imageFile = sys.argv[3]
imageandtext = 'txt_' + imageFile

tfile = '../picstxt/' + imageFile
f = open(tfile)
txtlines = f.readlines()
f.close()

# our fonts
fnt = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 14)
#fnt = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 40)
fnt36 = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 36)
fnt2 = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 18)
fntBold = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 40)
# PiDisplay resolution is 800x480
margin = 35
# semi-parameterized variables
x0 = margin - 30
x1 = margin -15
cwidth = 6
yline = 27
ychevron=(yline-28)/2
ycoff = 5
yoffset = 12
yrec= -10
rpad = 15
#
textimagey = 130
textimagex = width

# menu items
textimage = Image.new('RGB', (textimagex, textimagey), 'white')
for t in txtlines:
    img_draw = ImageDraw.Draw(textimage)
    img_draw.text((margin, yoffset), t, font=fnt, fill='MidnightBlue')
    yoffset += yline

# merge three images together...
# black background covering whole display:
masterimage = Image.new('RGB',(width,height),'black')
# original image:
oimage = Image.open(imageFile)
# original image width
owidth = oimage.size[0]
# get offset so narrow pictures are centered
xoffset = int((width - owidth)/2)
masterimage.paste(oimage,(xoffset,0))
masterimage.paste(textimage,(0,height - textimagey))

masterimage.save(imageandtext)

fancyresize.py

                    

#!/usr/bin/python3
# DrJ 2/2021
import PIL, os
import sys
from PIL import Image
# somewhat inspired by http://www.riisen.dk/dop/pil.html
# arguments:
# <width> <height> file
# with and height should be provided as values in pixels
# image file should be provided as argument.
# A pidisplay is 800x480

displaywidth = int(sys.argv[1])
displayheight = int(sys.argv[2])
smallscreen = 801
imageFile = sys.argv[3]
im1 = Image.open(imageFile)
narrowmax = .76
blowupfactor = 1.1
# take less from the top than the bottom
topshare = .3
bottomshare = 1.0 - topshare
# for DrJ debugging
DEBUG = True
if DEBUG:
  print("display width and height: ",displaywidth,displayheight)

def imgResize(im):
    width = im.size[0]
    height = im.size[1]
    if DEBUG:
      print("image width and height: ",width,height)

# If the aspect ratio is wider than the display screen's aspect ratio,
# constrain the width to the display's full width
    if width/float(height) > float(displaywidth)/float(displayheight):
      if DEBUG:
        print("In section width contrained to full width code section")

      widthn = displaywidth
      heightn = int(height*float(displaywidth)/width)
      im5 = im.resize((widthn, heightn), Image.ANTIALIAS) # best down-sizing filter
    else:
      heightn = displayheight
      widthn  = int(width*float(displayheight)/height)

      if width/float(height) < narrowmax and displaywidth < smallscreen:
# if width is narrow we're losing too much by using the whole picture.
# Blow it up by blowupfactor% if display is small, and crop most of it from the bottom
        heightn = int(displayheight*blowupfactor)
        widthn  = int(width*float(heightn)/height)
        im4 = im.resize((widthn, heightn), Image.ANTIALIAS) # best down-sizing filter
        top = int(displayheight*(blowupfactor - 1)*topshare)
        bottom = int(heightn - displayheight*(blowupfactor - 1)*bottomshare)
        if DEBUG:
          print("heightn,top,widthn,bottom: ",heightn,top,widthn,bottom)

        im5 = im4.crop((0,top,widthn,bottom))
      else:
        im5 = im.resize((widthn, heightn), Image.ANTIALIAS) # best down-sizing filter

    im5.save("resize_" + imageFile)

imgResize(im1)

analyzeDate.pl

                    

#!/usr/bin/perl
# 20180818_201647.jpg
use POSIX;
$DEBUG = 1;
$HOME = "/home/pi";
$random = "$HOME/random.list";
$rean   = "$HOME/rean.list";
#$file = "Picturestmp/20180422_134220.jpg";
while(<>){
$GPS = $date = 0;
$gpsinfo = "";
$file = $_;
#open(ANAL,"$HOME/getinfo.py \"$file\"|") || die "Cannot open file: $file!!\n";
open(ANAL,"cat \"$file\"|") || die "Cannot open file: $file!!\n";
print STDERR "filename: $file\n" if $DEBUG;
while(<ANAL>){
  $town = "";
  if (/DateTimeOriginal/i && $date++ < 1) {
# DateTimeOriginal = 2018:08:18 20:16:47
#or...  DateTimeDigitized = 2016/03/07 00:57:49
    print STDERR "DATE: $_" if $DEBUG;
    ($yr,$mon,$date,$hr,$min) = /(\d{4}):(\d\d):(\d\d) (\d\d):(\d\d)/;
    print STDERR "$yr,$mon,$date,$hr,$min\n" if $DEBUG;
# my custom format: Saturday, August 18, 2018  8:16 pm
    $dateinfo =  strftime("%A, %B %d, %Y %l:%M %p", 0, $min, $hr, $date , $mon - 1, $yr - 1900, -1, -1, -1);
  }
}
# folder info from random.list
$match = `cat $random $rean|grep "$file"`;
($folder) = $match =~ /(.+)\/[^\/]+/;
print STDERR "matched line, folder: $match, $folder\n" if $DEBUG;

# if no date, use filesystem date
if ( ! $dateinfo ) {
  $jpegfile = "../Picturestmp/$file";
  $mtime = (stat($jpegfile))[9];
  $handtst = `ls -l "$jpegfile"`;
  @ltime = localtime $mtime;
  $dateinfo =  strftime("(guess) %A, %B %d, %Y %l:%M %p",@ltime);
  print STDERR "No date info. Use filesystem date. mtime is $mtime. dateinfo: $dateinfo\n";
  print STDERR "Hand test of file age: $handtst\n";
}

$dateinfo = $dateinfo || "No date found";
$gpsinfo = $gpsinfo || "No info found";

print qq(File: $file
Folder: $folder
Date: $dateinfo
);
}

analyzeGPS.pl

                    

#!/usr/bin/perl
# use in combination with this post https://drjohnstechtalk.com/blog/2020/12/convert-gps-coordinates-into-town-name/
use POSIX;
$DEBUG = 1;
$HOME = "/home/pi";
#$file = "Pictures/20180422_134220.jpg";
while(<>){
$GPS = $date = 0;
$gpsinfo = "";
$file = $_;
#open(ANAL,"$HOME/getinfo.py \"$file\"|") || die "Cannot open file: $file!!\n";
open(ANAL,"cat \"$file\"|") || die "Cannot open file: $file!!\n";
print STDERR "filename: $file\n" if $DEBUG;
while(<ANAL>){
  $postalcode = $town = $name = "";
  if (/GPS/i) {
    print STDERR "GPS: $_" if $DEBUG;
# GPSInfo = {1: 'N', 2: (39.0, 21.0, 22.5226), 3: 'W', 4: (74.0, 25.0, 40.0267), 5: 1.7, 6: 0.0, 7: (23.0, 4.0, 14.0), 29: '2016:07:22'}
   ($pole,$deg,$min,$sec,$hemi,$lngdeg,$lngmin,$lngsec) = /1: '([NS])', 2: \(([\d\.]+), ([\d\.]+), ([\d\.]+)...3: '([EW])', 4: \(([\d\.]+), ([\d\.]+), ([\d\.]+)\)/i;
   print STDERR "$pole,$deg,$min,$sec,$hemi,$lngdeg,$lngmin,$lngsec\n" if $DEBUG;
   $lat = $deg + $min/60.0 + $sec/3600.0;
   $lat = -$lat if $pole eq "S";
   $lng = $lngdeg + $lngmin/60.0 + $lngsec/3600.0;
   $lng = -$lng if $hemi = "W" || $hemi eq "w";
   print STDERR "lat,lng: $lat, $lng\n" if $DEBUG;
   #$placename = `curl -s "$url"|grep -i toponym`;
   next if $lat == 0 && $lng == 0;
# the address API is the most precise
   $url = "http://api.geonames.org/address?lat=$lat\&lng=$lng\&username=drjohns";
   print STDERR "Url: $url\n" if $DEBUG;
   $results = `curl -s "$url"|egrep -i 'street|house|locality|postal|adminName'`;
   print STDERR "results: $results\n" if $DEBUG;
   ($street) = $results =~ /street>(.+)</;
   ($houseNumber) = $results =~ /houseNumber>(.+)</;
   ($postalcode) = $results =~ /postalcode>(.+)</;
   ($state) = $results =~ /adminName1>(.+)</;
   ($town) = $results =~ /locality>(.+)</;
   print STDERR "street, houseNumber, postalcode, state, town: $street, $houseNumber, $postalcode, $state, $town\n" if $DEBUG;
# I think locality is pretty good name. If it exists, don't go  further
   $postalcode = "" if $town;
   if (!$postalcode && !$town){
# we are here if we didn't get interesting results from address reverse loookup, which often happens.
     $url = "http://api.geonames.org/extendedFindNearby?lat=$lat\&lng=$lng\&username=drjohns";
     print STDERR "Address didn't work out. Trying extendedFindNearby instead. Url: $url\n" if $DEBUG;
     $results = `curl -s "$url"`;
# parse results - there may be several objects returned
     $topelemnt = $results =~ /<geoname>/i ? "geoname" : "geonames";
     @elmnts = ("street","streetnumber","lat","lng","locality","postalcode","countrycode","countryname","name","adminName2","adminName1");
     $cnt = xml1levelparse($results,$topelemnt,@elmnts);

     @lati = @{ $xmlhash{lat}};
     @long = @{ $xmlhash{lng}};
# find the closest entry
     $distmax = 1E7;
     for($i=0;$i<$cnt;$i++){
       $dist = ($lat - $lati[$i])**2 + ($lng - $long[$i])**2;
       print STDERR "dist,lati,long: $dist, $lati[$i], $long[$i]\n" if $DEBUG;
       if ($dist < $distmax) {
         print STDERR "dist < distmax condition. i is: $i\n";
         $isave = $i;
       }
     }
     $street = @{ $xmlhash{street}}[$isave];
     $houseNumber = @{ $xmlhash{streetnumber}}[$isave];
     $admn2 = @{ $xmlhash{adminName2}}[$isave];
     $postalcode = @{ $xmlhash{postalcode}}[$isave];
     $name = @{ $xmlhash{name}}[$isave];
     $countrycode = @{ $xmlhash{countrycode}}[$isave];
     $countryname = @{ $xmlhash{countryname}}[$isave];
     $state = @{ $xmlhash{adminName1}}[$isave];
     print STDERR "street, houseNumber, postalcode, state, admn2, name: $street, $houseNumber, $postalcode, $state, $admn2, $name\n" if $DEBUG;
     if ($countrycode ne "US"){
       $state .= " $countryname";
     }
     $state .= " (approximate)";
   }
# turn zipcode into town name with this call
   if ($postalcode) {
     print STDERR "postalcode $postalcode exists, let's convert to a town name\n";
     print STDERR "url: $url\n";
     $url = "http://api.geonames.org/postalCodeSearch?country=US\&postalcode=$postalcode\&username=drjohns";
     $results = `curl -s "$url"|egrep -i 'name|locality|adminName'`;
     ($town) = $results =~ /<name>(.+)</i;
     print STDERR "results,town: $results,$town\n";
   }
   if (!$town) {
# no town name, use adminname2 which is who knows what in general
     print STDERR "Stil no town name. Use adminName2 as next best thing\n";
     $town = $admn2;
   }
   if (!$town) {
# we could be in the ocean! I saw that once, and name was North Atlantic Ocean
     print STDERR "Still no town. Try to use name: $name as last resort\n";
     $town = $name;
   }
   $gpsinfo = "$houseNumber $street $town, $state" if $locality || $town;
   } # end of GPS info exists condition
  } # end loop over ANAL file
  $gpsinfo = $gpsinfo || "No info found";
  print qq(Location: $gpsinfo
);
} # end loop over STDIN

#####################
# function to parse some xml and fill a hash of arrays
sub xml1levelparse{
# build an array of hashes
$string = shift;
# strip out newline chars
$string =~ s/\n//g;
$parentelement = shift;
@elements = @_;
$i=0;
while($string =~ /<$parentelement>/i){
 $i++;
 ($childelements) = $string =~ /<$parentelement>(.+?)<\/$parentelement>/i;
 print STDERR "childelements: $childelements" if $DEBUG;
 $string =~ s/<$parentelement>(.+?)<\/$parentelement>//i;
 print STDERR "string: $string\n" if $DEBUG;
 foreach $element (@elements){
  print STDERR "element: $element\n" if $DEBUG;
  ($value) = $childelements =~ /<$element>([^<]+)<\/$element>/i;
  print STDERR "value: $value\n" if $DEBUG;
  push @{ $xmlhash{$element} }, $value;
 }
} # end of loop over parent elements
return $i;
} # end sub xml1levelparse

m3.pl

                    

#!/usr/bin/perl
# show the pics ; rotate the screen as needed
# for now, assume the display is in a neutral
# orientation at the start
use Time::HiRes qw(usleep);
$DEBUG = 1;
$delay = 6; # seconds between pics
###$delay = 4; # for testing
$mdelay = 200; # milliseconds
$mshow = "$ENV{HOME}/mediashow";
$pNames = "$ENV{HOME}/pNames";
# pics are here
$picsDir = "$ENV{HOME}/Pictures";
$refreshFile = "$ENV{HOME}/refresh";

chdir($picsDir);
$cn = `ls -1|wc -l`;
chomp($cn);
print "$cn files\n" if $DEBUG;
# throw up a first picture - all black. Trick to make black bckgrd permanent
system("sudo fbi -a --noverbose -T 1 $ENV{HOME}/black.jpg");
# see if this is a new batch of pictures
$refresh = (stat($refreshFile))[9];
$now = time();
$diff = $now - $refresh;
print "refresh,now,diff: $refresh, $now, $diff\n" if $DEBUG;
if ($diff < 100){
  system("sudo fbi -a --noverbose -T 1 $ENV{HOME}/newslideshowintro.jpg");
  sleep(25);
}
system("sudo fbi -a --noverbose -T 1 $ENV{HOME}/black.jpg");
system("sleep 1; sudo killall fbi");
# start infinitely looping fbi slideshow
for (;;) {
# then start slide show
# shell echo cannot work with null character so we need to use a file to store it
    system("sudo xargs -a $mshow -0 fbi --noverbose -1 -T 1  -t $delay ");
    ###system("sudo xargs -a $mshow -0 fbi -a -1 -T 1  -t $delay "); # for testing
# fbi runs in background, then exits, so we need to monitor if it's still alive
    for(;;) {
      open(MON,"ps -ef|grep fbi|grep -v grep|") || die "Cannot launch ps -ef!!\n";
      $match = <MON>;
      if ($match) {
        print "got fbi match\n" if $DEBUG > 1;
        } else {
        print "no fbi match\n" if $DEBUG;
# fbi not found
          last;
      }
      close(MON);
      print "usleeping, noexist is $noexit\n" if $DEBUG > 1;
      usleep($mdelay);
    } # end loop testing if fbi has exited
} # close of infinite loop

Optional script

mshowtmp.pl (revision not yet reflected in the tar file)

                    

#!/usr/bin/perl
# add txt_ to beginning of filename
$DEBUG = 1;
$HOME = "/home/pi";
$mshow = "$HOME/mediashow.orig";
$mshow2 = "$HOME/mediashowtmp2";
$ms = `cat $mshow`;
@pics = split('\0',$ms);
$ms = "";
foreach $file (@pics) {
  print "file is $file\n" if $DEBUG;
  $ms .= "txt_" . $file . "\0";
}
# print out new mediashow pics in order
print "Printing new mediashow: $ms\n" if $DEBUG;
open(MS,">$mshow2") || die "Cannot open mediashow $mshow2!!\n";
print MS $ms;
close(MS);

crontab entries

                    
@reboot sleep 20; ./m3.pl >> m3.log 2>&1
26 5 */3 * * ./master3.sh >> master.log 2>&1

That will refresh the slideshow every three days, which we found is a good interval for our lifestyle – some days you don’t get around to viewing them. If you want to refresh every day just change ‘*/3″ to ‘*’.

And… that’s it!

Reminder

Don’t forget to make all these files executable. Something like:

$ chmod +x *.pl *.py *.sh

should do it.

My equipment

RPi 3 running Raspbian Lite

Pi Display (probably would also work with an HDMI display)/ The Pi Display resolution is 800×480, so pretty small.

Pre-install

There are a few things you’ll need such as fbi, python3, pip, python Pillow and rclone. That’s basically described in my previous post so I won’t repeat it here.

Getting started

To see how badly things are going for you (hey, I like to be cautiously pessimistic) after you’ve created all these files and have installed rclone, do a

$ ./master3.sh

If you have your rclone file listing (which takes a long time) and want to focusing on debugging the rest of it, do a

$ ./master3.sh skip

Discussion

In this version of Raspberry Pi photo frame I’ve made more effort to force time separation between the randomly selected photos. But, that’s not all. I blow up pictures taken in a narrow (portrait) mode (see next paragraph). And I do some fancy analysis to determine filename, folder, date, time and even location of the pictures. And there’s more. I create an alternate version of each photo which embeds this info at the bottom – in anticipation of my even more fancy remote-controlled slideshow! I am afraid to overwrite what I have previously posted because that by itself is a complete solution and works quite well on its own. So this can be considered worthy of folks looking for a little more challenge to get better results.

The fancyresize.py script is designed around my small PiDisplay which has a horizontal resolution of only 800 pixels. It blows up a narrow, portrait-format picture only if the detected display has a horizontal resolution of no more than 800 pixels. It blows the picture up by 10%, chops off 3% from the top, 7% from the bottom, because that yields optimal results in my experience. If you like that approach but are using a larger HDMI display, you could edit the “801” in that file to make it a larger number (bigger than your display, like 5000).

Show pictures with embedded info

This process is not streamlined. But it can be cool to do it by hand. You could follow these steps.

$ ./mshowtmp.pl; mv mediashowtmp2 mediashow

If you wait the whole cycle the next time around it should display the pictures with the embedded info at the bottom. If you’re impatient, do this:

$ sudo pkill -9 fbi; sudo pkill -9 m3.pl

$ nohup ./m3.pl > m3.log 2>&1 &

Fun Fact

You know how those old digital cameras created files prefixed with DSC, like DSC00102.JPG? If you read the JPEG spec, which is a pretty dense document, you learn that DSC stands for Digital Still Camera.

Concept for tossing out pictures of documents

We sometimes take pictures of documents, or computer screens, or a slide at a presentation, or a historical marker. They don’t make for compelling slideshow material. Well, the historical markers are debatable since they have character. Anyway, I am looking at using an old open source program called tesseract to do OCR (optical character recognition) on all the photos to help identify those containing a lot of words so they can be excluded. I’ll include that if I determine it to be a good approach.

Installing a searchable dictionary on Raspberry Pi

To install a word dictionary that you can do simple searches against on an RPi, try:

$ sudo apt-get install wamerican

or maybe

$ sudo apt-get install wamerican-huge

Those will produce simple wordlists, not actual dictionaries with definitions as you might have expected. They go into /usr/share/dict, e.g., usr/share/dict/american-english-huge.

The dict program is quite nice. apt-get install dict. Then you run it like this

$ dict neume

and it shoots back definitions and cites sources for those definitions. The drawback for my purposes is that it uses your Internet connection and I’m trying to build a photo frame that doesn’t rely too much on the Internet after the photos themselves are fetched.

$ sudo apt-cache search wordlist

lists all available dictionaries, I believe.

Setting up tesseract

This page has these instructions

git clone https://github.com/thortex/rpi3-tesseract.git 
cd rpi3-tesseract 
cd release 
./install_requires_related2leptonica.sh ./install_requires_related2tesseract.sh 
./install_tesseract.sh

But you’re gonna need git first:

$ sudo apt-get install git

RPi lost Wifi

This could be a whole separate post. In the course of my hard work my RPi just would not acquire an IP address on wlan0.

Here’s a great command to see all the SSIDs it knows about:

$ sudo iwlist wlan0 scan > scan.log

Then you can inspect scan.log in an editor. Turns out the one SSID it needed wasn’t in the list. Turns out I had reserved a DHCP entry for it in my router. My router was simply not cooperating, it seems – the RPi wasn’t doing anything wrong. I was almost ready to re-install the whole thing and waste hours… My router is an older model Linksys WRT1200AC. I removed the DHCP reservation on the router, then did a

$ sudo service networking stop; sudo service networking start

on the RPi, and…all was good! Its assigned IP won’t change that often, I can always check the router to see what it is. The management software with the Linksys is quite good.

Conclusion

A more advanced treatment of photos is shown in this post than I have done previously. It is fairly robust and will withstand quite a few user errors in my experience. The end result will be an interesting display of your photos, randomly selected but in small groupings.

References and related

The tar file which contains everything: https://drjohnstechtalk.com/blog/downloads/photoFrameII.tar

Please see this popular post Raspberry Pi photo frame using your pictures on your Google Drive for more details.

m3.pl refers to a black.jpg and a newslideshowintro.jpg file. It’s not a disaster to not have those, but the overall experience will be slightly better. Here’s black.jpg:

And the beautiful newslideshowintro.jpg I created is at the top of this blog post.

Tesseract, an surprisingly old and surprisingly good OCR open-source OCR program, is basically impossible to compile for RPi. Fortunately, someone has done it for us. This page has the instructions: https://github.com/thortex/rpi3-tesseract

Categories
Raspberry Pi

Raspberry Pi advanced photo frame

Intro

I am assembling a lot of different ideas I have to do some more cool things than was possible with my original Raspberry Pi photo frame effort although that contained a lot of original ideas as well.

Skillset

Intermediate or better linux skills required. Beginners/newbies: please do not attempt as you will encounter insurmountable problems and be left in a trail of tears. I don’t have time to help.

I will be using this remote control which I can attest is indeed compatible with the RPi:

The inexpensive Rii remote controller with keyboard works with your Raspberry Pi

But it has no CTRL key! I can’t survive without that. It seems aimed at media consumers. I guess those types never need that key. At this point in time my idea is to use the arrow keys + Enter button as a familiar way to navigate around a simple menu I plan to create, plus perhaps the menu key. the pre-defined keys fbi has created for navigation are simply not intuitive, nor are they adequate for the tasks I have in mind.

Rii keyValue
up arrow103
down arrow108
right arrow106
left arrow105
Menu127
OK28
Some interesting keys and their values when monitored

In my basic photo frame approach I had a simpler rotate image python script. This python program below rotates pictures by the specified amount and preserves the EXIF tags. It doesn’t update the orientation tag after rotating because for the fbi display program I use that doesn’t matter. I call it rotate.py.

                    
#!/usr/bin/python3
# call with two arguments: degrees-to-rotate and filename
import PIL, os
import sys
from PIL import Image
# first do: pip3 install piexif
import piexif

degrees = int(sys.argv[1])
pic = sys.argv[2]

picture= Image.open(pic)
# see https://github.com/hMatoba/Piexif for piexif writeup
exif_dict = piexif.load(picture.info[“exif”])
exif_bytes = piexif.dump(exif_dict)
# both rotate and preserve EXIF data
picture.rotate(degrees,expand=True).save(“rot_” + pic,”jpeg”, exif=exif_bytes)

As it says in the code you need to install piexif in addition to Pillow:

$ sudo pip3 install Pillow && sudo pip3 install piexif

Example call

$ ./rotate.py 90 20160514_131528.jpg

Difficult problem

I set for myself a problem that is much more difficult than anything I’ve tackled. I wanted to post a preliminary solution, but I don’t want to do constant re-writes which are time-consuming. I have a lot of code re-writes to do. I do have a menu system working, and a couple functions implemented to date. But there is so much more to do to even get to an alpha version.

To be continued…

Pie-in-the-sky To-Do list

  • Use of deep learning AI to toss out images which are poor quality
  • Use Facebook API to identify people in the images
  • Commercialization of idea
  • Smarthome enablement, e.g., hey Alexa, pause that picture and tell me about it, etc

Breaking those pie-in-the-sky ideas down, I believe the RPi is way vastly underpowered to do any serious image analysis; Facebook facial recognition is creepy and an invasion of privacy; commercialization sounds great on paper but in reality is a time sink doing unpleasant things for little or no profit in the end; and lastly Smarthome enablement is actually the most achievable and was my original thinking before I landed on the remote control. I may or may not get back to it one day.

References and related

A more basic approach to creating a Raspberry Pi – based photo frame is described here.

The Rii remote control I am using only cost $12! https://www.amazon.com/gp/product/B01CL3ZXGO/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&psc=1

A great tutorial on the Pillow python package which I use for image processing: https://auth0.com/blog/image-processing-in-python-with-pillow/

The full documentation fills it out even more: https://pillow.readthedocs.io/en/stable/

The official Exif documentation is here: http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf . For instance, page 42 says UserComments get the Tag ID 37510.