Categories
Firewall

Checkpoint Gaia admin tips

Intro

Suppose, hypothetically, that you had super admin access to a CMA in SmartConsole v 80.40, but lacked ssh or GUI access to firewalls within that CMA? What could you do? Can you run commands in a pinch? Yes. You can. Here are some concrete examples.

Caveats

In the servers section of the domain you can right-click and choose “Run one-time script.” That’s great, but I think there are limits. It will time out a script that takes too long. IDK, maybe 10 seconds or so is the maximum time allowed. The returned text gets truncated if it’s too long. 15 lines of text is OK. 200 is not. Somewhere inbetween those two is the limit.

Running clish commands

clish commands can indeed be run this way. I was interested in examining a few routes on a firewall with many static routes. I ran:

netstat -rn|grep 198.23|head -15

Set a static route

clish -sc “set static-route 197.6.75.0/24 nexthop gateway address 10.23.42.10 on”

Redistribute this route via BGP

clish -sc “set route-redistribution to bgp-as 38002.48928 from static-route 197.6.75.0/24 on”

Run a PING (best to restrict the number of ping packets)

ping -c3 1.1.1.1

Show a part of configuration, e.g., BGP stuff

clish -c “show configuration”|grep bgp|head -15

Conclusion

Real firewall admins I know fail to realize that even when they lack shell access to a firewall they can pretty issue any command they need if they use the one-time script option in SmartConsole. It just helps to follow along the lines of the examples above – limiting output, etc. Even clish config changes can be made! A common reason to be in this situation is to learn someone changed a password or cleaned up old accounts.

Categories
Admin Linux Network Technologies

Measuring bandwidth on Checkpoint Gaia

Intro
Sometimes you don’t have the tools you want but you have enough to make do. Such is the case with the command line utilities of the CLI of Checkpoint Gaia. It’s like a basic Linux. The company I consult for is beginning to hit some bandwidth limits and I wanted to understand overall traffic flow better. In the absence of any proper bandwidth monitors I used the netstat command and some approximations. Crude thouigh it may be it already gave me a much better idea about my traffic than I had going into this project.

The details
I call this BASH script netstats.sh

#!/bin/bash
# for Gaia, not IPSO
c=0
sleep=2
while /bin/true; do
  v[1]=`netstat -Ieth1-01 -e|grep RX|grep TX`
  n[1]="vlan 102           "
  v[2]=`netstat -Ieth1-05 -e|grep RX|grep TX`
  n[2]="vlan 103 200.78.39    "
  v[3]=`netstat -Ieth1-02 -e|grep RX|grep TX`
  n[3]="vlan 103 10.31.42"
  v[4]=`netstat -Ieth1-03 -e|grep RX|grep TX`
  n[4]="trunk for VPN      "
# interesting line:
#           RX bytes:4785585828883 (4.3 TiB)  TX bytes:7150474860130 (6.5 TiB)
  date
  for i in {1..4}; do
    RX=`echo ${v[$i]}|cut -d: -f2|awk '{print $1}'`
    TX=`echo ${v[$i]}|cut -d: -f3|awk '{print $1}'`
#    echo "vlan ${n[$i]}        RX,TX: $RX, $TX"
    if [ $c -gt 0 ]; then
      RXdiff=`expr $RX - ${RXold[$i]}`
      TXdiff=`expr $TX - ${TXold[$i]}`
# observed scaling factor: 8.1 bits/byte
      RXrate=$(($RXdiff*81/$sleep/10000000))
      TXrate=$(($TXdiff*81/$sleep/10000000))
      echo "${n[$i]}    RX,TX: $RXrate, $TXrate Mbps"
    fi
# old values
    RXold[$i]=$RX
    TXold[$i]=$TX
  done
  c=$(( $c + 1 ))
  sleep $sleep
done

It’s pretty self-explanatory. I would just note that in the older IPSO OS you don’t have the ability to get the bytes transferred from netstat. Just the number of packets, which is an inherently cruder measure. The calibration of 8.1 bits per byte (there is overhead from the frames) is maybe a little crude but it’s what I measured over the source of a couple minutes.

A quick glance at Redhat or CentOS shows me that this same script, with appropriate modifications for the interface names (eth0, eth1, etc), would also work on those OSes.

IPSO
I really, really wanted some kind of measure for IPSO as well. So I tackled that as best I could. Here is that script:

#!/bin/bash
# for IPSO, not Gaia
c=0
while [ 1 -gt 0 ]; do
# eth1-01: vlan 802; eth1-05: vlan 803 (144.29); eth1-02: vlan 803 (10.201.145)
  v[1]=`netstat -Ieth-s4p1|tail -1`
  n[1]="vlan 208.129.99     "
  v[2]=`netstat -Ieth-s4p2|tail -1`
  n[2]="vlan 208.156.254     "
  v[3]=`netstat -Ieth-s4p3|tail -1`
  n[3]="vlan 208.149.129     "
  v[4]=`netstat -Ieth-s4p4|tail -1`
  n[4]="trunk for Cisco and b2b"
# interesting line:
#Name         Mtu   Network     Address             Ipkts Ierrs    Opkts Oerrs  Coll
#eth-s4p1     16018 <Link>      0:a0:8e:c4:ff:f4 72780201     0 56423000     0     0
  date
  for i in {1..4}; do
    RX=`echo ${v[$i]}|awk '{print $5}'`
    TX=`echo ${v[$i]}|awk '{print $7}'`
#    echo "vlan ${n[$i]}        RX,TX: $RX, $TX"
    if [ $c -gt 0 ]; then
      RXdiff=$(($RX - ${RXold[$i]}))
      TXdiff=$(($TX - ${TXold[$i]}))
# observed: .0043 mbits/packet
      RXrate=$(($RXdiff*43/100000))
# observed: .0056 mbits/packet
      TXrate=$(($TXdiff*56/100000))
      echo "${n[$i]}    RX,TX: $RXrate, $TXrate Mbps"
    fi
# old values
    RXold[$i]=$RX
    TXold[$i]=$TX
  done
  c=$(( $c + 1 ))
  sleep 10
done

The conversion to bits is probably only accurate to +/- 25%, because it depends a lot on the application, i.e., VPN concentrator versus proxy server. I just averaged all applications together because that’s the best I could do. I compared it to a Cisco router’s statistics.

Note that in Gaia cpview can also be run frmo the CLI. Then you can drill down to the specific interface information. I have compared my script to using cpview (which has a default update screen time of 2 seconds) and they’re pretty close. As far as I know there is no way to script cpview. And at the end of the day I suspect it is only doing the same thing my script does.

Conclusion
A script is provided which gives a measure of Mbps bandwidth usage by polling netstat periodically. It’s not exact, but even crude measures can help a network engineer.