Categories
Admin Linux Network Technologies

Quick Tip: Powershell command to unblock a firewall port when running Windows Defender

Setup
I decided to run an X Server on my Windows 10 laptop. I only need it for Cognos gateway configuration, but when you need it, you need it. Of course an X Server listens on port 6000, so hosts outside of your PC have to be able to initiate a TCP connection to your PC with destination port 6000. So that port has to be open. The software I use for the X Server is Mobatek XTerm.

Here is the Powershell command to disable the block of TCP port 6000.

New-NetFirewallRule -DisplayName "MobaXterm Allow Incoming Requests" -Direction Inbound -LocalPort 6000 -Protocol TCP -Profile Domain -Action Allow

The Powershell window needs to be run as administrator. The change is permanent: it suffices to run it once.

Conclusion
And, because inquiring minds want to know, did it work? Yes, it worked and I could send my cogconfig X window to my Mobatek X Server. I had to look for a new Window. It was slow.

Categories
Linux Network Technologies

Network utilities for Windows

Intro
Today I came across a simple but useful tool which runs on Windows systems that will help determine if a remote host is listening on a particular port. I wanted to share that information.

The details
PortQry is attractive because of its simplicity, plus, it is supported and distributed by Microsoft themselves. The help section reads like this:

PortQry version 2.0
 
Displays the state of TCP and UDP ports
 
 
Command line mode:  portqry -n name_to_query [-options]
Interactive mode:   portqry -i [-n name_to_query] [-options]
Local Mode:         portqry -local | -wpid pid| -wport port [-options]
 
Command line mode:
 
portqry -n name_to_query [-p protocol] [-e || -r || -o endpoint(s)] [-q]
        [-l logfile] [-sp source_port] [-sl] [-cn SNMP community name]
 
Command line mode options explained:
        -n [name_to_query] IP address or name of system to query
        -p [protocol] TCP or UDP or BOTH (default is TCP)
        -e [endpoint] single port to query (valid range: 1-65535)
        -r [end point range] range of ports to query (start:end)
        -o [end point order] range of ports to query in an order (x,y,z)
        -l [logfile] name of text log file to create
        -y overwrites existing text log file without prompting
        -sp [source port] initial source port to use for query
        -sl 'slow link delay' waits longer for UDP replies from remote systems
        -nr by-passes default IP address-to-name resolution
            ignored unless an IP address is specified after -n
        -cn specifies SNMP community name for query
            ignored unless querying an SNMP port
            must be delimited with !
        -q 'quiet' operation runs with no output
           returns 0 if port is listening
           returns 1 if port is not listening
           returns 2 if port is listening or filtered
 
Notes:  PortQry runs on Windows 2000 and later systems
        Defaults: TCP, port 80, no log file, slow link delay off
        Hit Ctrl-c to terminate prematurely
 
examples:
portqry -n myserver.com -e 25
portqry -n 10.0.0.1 -e 53 -p UDP -i
portqry -n host1.dev.reskit.com -r 21:445
portqry -n 10.0.0.1 -o 25,445,1024 -p both -sp 53
portqry -n host2 -cn !my community name! -e 161 -p udp
...

The PortQry “install” consisted of unzipping a ZIP file, so, no install at all, and no special permissions needed, which is a plus in my book.

nmap
Of course there is always nmap. I never really got into it so much, but clearly you can go nuts with it. One advantage is that it is available on linux and MacOS as well. But in my opinion it is a heavy-handed install.

References and related
PortQry

nmap

Some nmap examples I have used.

Categories
Admin Linux

Getting GNU screen to work on Windows 10 for a productive terminal multiplex environment

Intro
My jump server is getting old and they’re threatening to cut it off. A jump server is a server from which you launch CLI terminal sessions into your linux servers. Since my laptop has firewall access to all the same servers I wondered if I could build up a productive environment right within Windows 10 on my own laptop. For me this would be running GNU screen as a terminal multiplexer since I hop between terminal screens all day.

More details
Windows 10 is coming around to more fully integrating with Linux! it’s about time. WSL, windows subsystem for Linux, is all about that. And things like bash shell, ubuntu and OpenUSE Linux are available from the windows store. But that was not an option for me. My organizaiton has shut all that down.

So I thought back to my days as a Cygwin user those many years ago… Could I get GNU screen running within Cygwin environment on Windows 10? Well, yes, I can with just a few tweaks.

I think the initial Cygwin install required admin privileges, but once installed to run it does not.

Within Cygwin screen is an optional package and you can run their setup program to search and install it.

Here is my .screenrc file

defscrollback 4000
#change init sequence to not switch width
termcapinfo  xterm Z0=\E[?3h:Z1=\E[?3l:is=\E[r\E[m\E[2J\E[H\E[?7h\E[?1;4;6l
 
# Make the output buffer large for (fast) xterms.
termcapinfo xterm* OL=10000
 
# tell screen that xterm can switch to dark background and has function
# keys.
termcapinfo xterm 'VR=\E[?5h:VN=\E[?5l'
termcapinfo xterm 'k1=\E[11~:k2=\E[12~:k3=\E[13~:k4=\E[14~'
termcapinfo xterm 'kh=\E[1~:kI=\E[2~:kD=\E[3~:kH=\E[4~:kP=\E[H:kN=\E[6~'
 
# special xterm hardstatus: use the window title.
termcapinfo xterm 'hs:ts=\E]2;:fs=\007:ds=\E]2;screen\007'
 
#terminfo xterm 'vb=\E[?5h



lt;200/>\E[?5l' termcapinfo xterm 'vi=\E[?25l:ve=\E[34h\E[?25h:vs=\E[34l' # emulate part of the 'K' charset termcapinfo xterm 'XC=K%,%\E(B,[\304,\\\\\326,]\334,{\344,|\366,}\374,~\337' # xterm-52 tweaks: # - uses background color for delete operations termcapinfo xterm ut #from https://stackoverflow.com/questions/359109/using-the-scrollwheel-in-gnu-screen termcapinfo xterm* ti@:te@ escape ^\\ # changes espace sequence password

Note that in my .screenrc I use <Ctrl-\> as my escape sequence, so, e.g., to pop to the previous screen it is <Ctrl-\> <Ctrl-\>. I’m not sure that’s standard but my fingers will remember that to my dying day. They probably still remember some of those EDT/TPU VAX editor commands to this day!

Compare and contrast
Here are my day 0 observations.

ssh, curl, nslookup and tracert are coming from the underlying Windows system (do a which curl to see that) so that means you get the dumb version your system has.

So there is no dig, and no nc or netcat.

touch, cat, mkdir and vi behave pretty normally. man pages are installed, which can be a help.

If you use proxy, a funny thing can happen and your environment variables can get mixed. You may have inherited an HTTP_PROXY environment variable form the system, but the alias you copied from a linux jump server probably defines an http_proxy environment variable (lower case). And both can co-exist! As to which one curl would then use, who knows? Better just stick to working with the upper-case one and NOT define another in lower case.

For awhile it looked like scrolling was not working at all when screen was running. Then i found that tip I reference at the bottom of my .screenrc file which makes scrolling work via the mouse’s scroll wheel, which isn’t too bad.

Old friends like ls, grep, echo and while (built-in bash command) are available however. dig can be installed from the bind-utils package.

A lot of other packages are optionally available, including a whole X-Windows environment, which I used to run in the past but hope to avoid this time around.

No crontabs however (to have cron daemon requires installing admin privileges) which kind of hurts.

Simple output redirection seems to work, as does job control, e.g.,

ping -t 8.8.8.8 &gt; /dev/null 2&gt;&amp;1 &amp;

Not sure why you’d want to run the above command, but this nice example shows that the /dev/null device exists, and the ping command is inherited from your Windows environment hence the -t option to run it indefinitely, and that it will create a background process which you can view and control with jobs / kill.

Now I typically move my laptop off the work environment each night, so all my ssh logins will be lost, unlike the jump server situation. But our jump server isn’t that stable anyway so no big loss I’d say…

I am sooo used to highlighting text in Teraterm, which is my current environment, and that being sufficient to put that text into the clipboard, that I keep doing that in this environment. But it doesn’t work. I have to use the CMD window convention of highlighting the text and then hitting ENTER to get it into the clipboard. oops. That was because I had been launching Cygwin from a CMD window. Now I am launching from a proper Cygwin shortcut and simple text highlighting works, BUT, right-clicking to paste it in brings up a menu rather than just doing it! So there’s that difference now… Instead of right-click I can quickly paste the text in doing a SHIFT-Insert.

ssh will get you

By default you end up using the Windows-10 supplied ssh, and that works pretty well. But when you’re ready to advance and need to put some thing into a .ssh/config file, forget about it. In principle it’s possible in Windows 10, but it’s too complex. Just install the ssh package. That in turn permits you the facility familiar to you where you can create a ~/.ssh/config file.

How to set your userid by default for your ssh logins

First make sure you install the Cygwin ssh package and are using that one. A which ssh should come back with /usr/bin/ssh.

My config file looks like this:

Host *
User drjohn

That sets my default userid to be drjohn on any random server I ssh to.

New ssh error pops up
Unable to negotiate with 50.17.188.196 port 22: no matching key exchange method found. Their offer: diffie-hellman-group-exchange-sha1,diffie-hellman-group14-sha1,diffie-hellman-group1-sha1

This only happened when I switched from my Windows ssh to the Cygwin one. This is, of course, when connecting to a system (ironically, a firewall) with an old image. I think the only solution to be able to access these old systems is to switch back to the Windows 10 ssh – after all we never got rid of it and it used to work. Since all my customary ssh’s are aliased, this works well enough. I just made an alias like this

alias oldFW='screen -t oldFW /cygdrive/c/windows/system32/openssh/ssh.exe [email protected]'

since on my system the Windows 10 openssh is installed there in the system32 folder.

How do you get multiple login sessions (shells) within your screen to the localhost?

Well, you can’t just do a su – and you probably don’t have an ssh daemon running locally, so this is more of a non-trivial question than it first appears.

I define a bunch of aliases. My alias for getting an additional shell on the Windows 10 machine is this:

alias local=’screen -t localhost bash –login -i’

A word on package management
I don’t know why I was afraid of installing packages when I first tried Cygwin over a decade ago. Now for me that’s the key – to understand and practice installing packages because it’s actually really easy when you’re used to it.

The key is to simply keep your initial install setup hanging around, setup-x86_64.exe. In my case it’s in my downloads directory. Example usage: I wondered if I could install a decent version of ping rather than continually suffer with the dumb DOS version. So, fire up the above-mentioned executable. Go through a few screens (where it remembers the answers from the initial install), then search for the package (Yes, it’s there!), and select to install the most recent version from the drop-down. A few more clicks and it’s done and available in your path. it’s that easy… Not sure about uninstalling because you almost never need to do that. It seems maybe a thousand packages are available? so no, there’s no yum or zypper or rpm or apt-get, but who really needs those anyway?

As a concrete example, I am learning about SNMP. So I got something running on a Bluecoat proxy, and I wanted to see what I could see. The guide recommended using snmpwalk, which of course I did not have. So I learned which package it is in with a DDG search, then ran the Cygwin setup, found that package, installed it, and voila, there was snmpwalk in my path. And it worked, by the way. Easy peasy.

Creating your own scripts

If you have the funny situation, like me, where you had enough privileges to install Cygwin, perhaps by temporarily assigning your account the Admin role, but when you use it day-to-day, you do not have admin privileges, you will find yourself unable to create files in some of the system directories like /usr/local/bin – permission denied! But in your home directory you will be able to edit files.

So what I did is to create a bin directory under my home directory, where I plan to add my home-grown scripts such as mimeencode, and make sure my PATH includes this directory with a statement like

 export PATH=$PATH:${HOME}/bin

which I put in my .alias file, which in turn I source from .bashrc.

2021 update: The fate of the screen package

I read somewhere the screen utility which I love is beyond repair and will have to be replaced by something else. Too bad. I’ve used it for about 10 years now.

X Windows

In a previous iteration of Cygwin I had installed the X Server components though I left it out this time around. For an X Server running on my PC, which I do need from time-to-time, I use MobaXterm. Seems to work OK for my purposes, which are very minimal. But I prefer to use Cygwin over MobaXterm for the command line stuff I do.

Conclusion
GNU screen for Windows is indeed possible, but you gotta run it on top of Cygwin. It’s of interest that after all these years Cygwin is still viable on Windows 10. Cygwin can be run in a pretty lightweight fashion if you avoid the X-Windows stuff. There are some quirks but it is surprisingly linux-like at the end of the day. I believe it is really suitable as a replacement for a linux jump server. screen, for the uninitiated, is a temrinal multiplexer, which means it makes it very fast for you to switch between multiple terminal windows.

Some things are a bit different.

I think I will use this both at work and at home… Nope! My home PC runs too darn slow to ever use the Cygwin environment. My work laptop has SSD which probably helps keep performance good.

It is possible to set up an ssh default user.

It is possible to create multiple local shells within one screen within one Cygwin terminal.

So it is really possible to have your Linux command line. I use it every day…

2022 update

WSL2 is the way to go now. The setup can be little tricky, however, but it is worth it. You get a full hypervisor environment, not an emulator as you have with Cygwin. I write it up here. 

References and related

(2022) These days, it’s better to skip Cygwin and go straight to a full VM using WSL2.
Here’s the GNU Cygwin home page: https://www.cygwin.com/

Install Cygwin by running https://www.cygwin.com/setup-x86_64.exe

A newbie’s guide to Cygwin and linux commands: Cygwin Cheat Sheet – Step-by-Step Guide on Installation and Use (pcwdld.com)

Interesting discussion: https://stackoverflow.com/questions/359109/using-the-scrollwheel-in-gnu-screen

If you have a linux jump server that runs screen, or just want to ssh to a linux server, teraterm can be a good choice (as opposed to putty or built-in ssh). These days it can be found here: https://osdn.net/projects/ttssh2/releases/

To have an X Server running locally, MobaXterm seems a good choice. It looks like it’s free: https://mobaxterm.mobatek.net/

Categories
Admin Linux Raspberry Pi

Raspberry Pi Recovery Mode or interrupting the boot process

Intro
If you installed Raspbian from the NOOBS distribution as I do, then you may occasionally “blow up” your installation as I just have! You have an out, sort of, short of re-imaging the disk, though about with the same impact.

To interrupt the boot process and enter recovery mode, attach a USB keyboard and repeatedly hit the Shift key. You should come to the NOOBS OS install selection screen. Just re-install Rasbian again… But if you’re using WiFi first configure your WiFi setup before re-installing Raspbian.

Symptoms
When I powered up, I got the initial multi-color screen. Then a two-line text message popped up – too quickly to be read, then a grayish screen, then it split into a lower and upper part, then both halves faded away and there it stayed… At that point it was not responsive to any keyboard inputs or mouse clicks.

Conclusion
While doing my advanced slide show and rotating display project, I somehow managed to blow up my OS. finding the way to interrupt the boot-up was not so easy so I am amplifying the answer that worked for me on the Internet: repeatedly hit the Shift key during the boot, until you see the NOOBS image selector screen.

Categories
Linux Network Technologies Raspberry Pi

OLD: Raspberry Pi photo frame using your pictures on your Google Drive

Intro

This posting is messed up. I’ll have to re-post. Working on it… Try this post instead.

All my spouse’s digital photo frames are either broken or nearly broken – probably she got them from garage sales. Regardless, they spend 99% of the the time black. Now, since I had bought that Raspberry Pi PiDisplay awhile back, and it is underutilized, and I know a thing or two about linux, I felt I could create a custom photo frame with things I already have lying around – a Raspberry Pi 3, a PiDisplay, and my personal Google Drive. We make a point to copy all our cameras’ pictures onto the Google Drive, which we do the old-fashioned, by-hand way. After 17 years of digital photos we have about 40,000 of them, over 200 GB.

So I also felt obliged to create features you will never have in a commercial product, to make the effort worthwhile. I thought, what about randomly picking a few for display from amongst all the pictures, displaying that subset for a few days, and then moving on to a new randomly selected sample of images, etc? That should produce a nice review of all of them over time, eventually. You need an approach like that because you will never get to the end if you just try to display 40000 images in order!

The scripts
Here is the master file which I call master.sh.

#!/bin/sh
# DrJ 8/2019
# call this from cron once a day to refesh random slideshow once a day
RANFILE="random.list"
NUMFOLDERS=20
DISPLAYFOLDER="/home/pi/Pictures"
DISPLAYFOLDERTMP="/home/pi/Picturestmp"
SLEEPINTERVAL=3
DEBUG=1
STARTFOLDER="MaryDocs/Pictures and videos"
 
echo "Starting master process at "`date`
 
rm -rf $DISPLAYFOLDERTMP
mkdir $DISPLAYFOLDERTMP
 
#listing of all Google drive files starting from the picture root
if [ $DEBUG -eq 1 ]; then echo Listing all files from Google drive; fi
rclone ls remote:"$STARTFOLDER" &gt; files
 
# filter down to only jpegs, lose the docs folders
if [ $DEBUG -eq 1 ]; then echo Picking out the JPEGs; fi
egrep '\.[jJ][pP][eE]?[gG]
 
Needless to say, but I'd better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.
 
Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn't know that so I gotta deal with it). I call this script qiv.sh.
#!/bin/sh
# -f : full-screen; -R : disable deletion; -s : slideshow; -d : delay ; -i : status-bar;
# -m : zoom; [-r : ranomdize]
# this doesn't handle filenames with spaces:
##cd /media; qiv -f -R -s -d 5 -i -m `find /media -regex ".+\.jpe?g$"`
# this one does:
export DISPLAY=:0
if [ "$1" = "l" ]; then
# print out proposed filenames
  find . -regex ".+\.[jJ][pP][eE]?[gG]$"
else
# args: f fullscreen d delay s slideshow l autorotate R readonly I statusbar
# i nostatusbar m maxspect
  find . -regex ".+\.[jJ][pP][eE]?[gG]$" -print0|xargs -0 qiv -fRsmil -d 5
fi

Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.

#!/usr/bin/perl
use Getopt::Std;
my %opt=();
getopts("df:j:r:",\%opt);
$nofolders = $opt{f} ? $opt{f} : 20;
$DEBUG = $opt{d} ? 1 : 0;
$jpegs = $opt{j} ? $opt{j} : "jpegs.list";
$ranpicfile = $opt{r} ? $opt{r} : "jpegs-random.list";
print "d,f,j,r: $opt{d}, $opt{f}, $opt{j}, $opt{r}\n" if $DEBUG;
open(JPEGS,$jpegs) || die "Cannot open jpegs listing file $jpegs!!\n";
@jpegs = ;
# remove newline character
$nopics = chomp @jpegs;
open(RAN,"&gt; $ranpicfile") || die "Cannot open random picture file $ranpicfile!!\n";
for($i=0;$i&lt;$nofolders;$i++) {
  $t = int(rand($nopics-2));
  print "random number is: $t\n" if $DEBUG;
  ($dateTime) = $jpegs[$t] =~ /(\d{8}_\d{6})/;
  if ($dateTime) {
    print "dateTime\n" if $DEBUG;
  }
  $priorPic = $jpegs[$t-2];
  $Pic = $jpegs[$t];
  $postPic = $jpegs[$t+2];
  print RAN qq($priorPic
$Pic
$postPic
);
}
close(RAN);

Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!

@reboot sleep 25; cd ~ ; ./m2.pl &gt;&gt; ./m2.log 2&gt;&amp;1
24 16 * * * ./master.sh &gt;&gt; ./master.log 2&gt;&amp;1

Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package. More recent rclone packages offer more options than what is shown here, but work basically the same way.

$ sudo apt-get install rclone
$ rclone config

2019/08/05 20:22:42 NOTICE: Config file "/home/pi/.config/rclone/rclone.conf" not found - using defaults
No remotes found - make a new one
n) New remote
s) Set configuration password
q) Quit config
n/s/q&gt; n
name&gt; remote
Type of storage to configure.
Choose a number from below, or type in your own value
 1 / Amazon Drive
   \ "amazon cloud drive"
 2 / Amazon S3 (also Dreamhost, Ceph, Minio)
   \ "s3"
 3 / Backblaze B2
   \ "b2"
 4 / Dropbox
   \ "dropbox"
 5 / Encrypt/Decrypt a remote
   \ "crypt"
 6 / Google Cloud Storage (this is not Google Drive)
   \ "google cloud storage"
 7 / Google Drive
   \ "drive"
 8 / Hubic
   \ "hubic"
 9 / Local Disk
   \ "local"
10 / Microsoft OneDrive
   \ "onedrive"
11 / Openstack Swift (Rackspace Cloud Files, Memset Memstore, OVH)
   \ "swift"
12 / Yandex Disk
   \ "yandex" 
Storage&gt;7
 
Google Application Client Id
Leave blank normally.
Enter a string value. Press Enter for the default ("").
client_id&gt;
Google Application Client Secret
Leave blank normally.
Enter a string value. Press Enter for the default ("").
client_secret&gt;
Remote config
Use auto config?
 * Say Y if not sure
 * Say N if you are working on a remote or headless machine or Y didn't work
y) Yes
n) No
y/n&gt; N
If your browser doesn't open automatically go to the following link: https://accounts.google.com/o/oauth2/auth?client_id=202264815644.apps.googleusercontent.com&amp;redirect_uri=urn%3Aietf%3Awg%3Aoauth%3A2.0%3Aoob&amp;response_type=code&amp;scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive&amp;state=07ab6a457efc9384772f919dca93375
Log in and authorize rclone for access

You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:

Please copy this code, switch to your application and paste it there:
 
Enter verification code&gt;4/nQEXJZOTdP_asMs6UQZ5ucs6ecvoiLPelQbhI76rnuj4sFjptxbjm7w
--------------------
[remote]
client_id =
client_secret =
token = {"access_token":"ya29.Il-KB3eniEpkdUGhwdi8XyZyfBFIF2ahRVQtrr7kR-E2lIExSh3C1j-PAB-JZucL1j9D801Wbh2_OEDHthV2jk_MsrKCMiLSibX7oa_YtFxts-V9CxRRUirF1_kPHi5u_Q","token_type":"Bearer","refresh_token":"1/MQP8jevISJL1iEXH9gaNc7LIsABC-92TpmqwtRJ3zV8","expiry":"2019-09-21T08:34:19.251821011-04:00"}
--------------------
y) Yes this is OK
e) Edit this remote
d) Delete this remote
y/e/d&gt; y
Current remotes:
 
Name                 Type
====                 ====
remote               drive
 
e) Edit existing remote
n) New remote
d) Delete remote
s) Set configuration password
q) Quit config
e/n/d/r/s/q&gt;q

Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:

./master.sh
-bash: ./master.sh: Permission denied

Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” .   – copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete

real    1m12.201s
user    0m15.270s
sys     0m1.816s

My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.

files |awk '{$1=""; print substr($0,2)}'|grep -i -v /docs/ &gt; jpegs.list # throw NUMFOLDERS or so random numbers for picture selection, select triplets of photos by putting # names into a file if [ $DEBUG -eq 1 ]; then echo Generate random filename triplets; fi ./random-files.pl -f $NUMFOLDERS -j jpegs.list -r $RANFILE # copy over these 60 jpegs if [ $DEBUG -eq 1 ]; then echo Copy over these random files; fi cat $RANFILE|while read line; do rclone copy remote:"${STARTFOLDER}/$line" $DISPLAYFOLDERTMP sleep $SLEEPINTERVAL done # kill any qiv slideshow if [ $DEBUG -eq 1 ]; then echo Killing old qiv slideshow; fi pkill -9 -f qiv # remove old pics if [ $DEBUG -eq 1 ]; then echo Removing old pictures; fi rm -rf $DISPLAYFOLDER mv $DISPLAYFOLDERTMP $DISPLAYFOLDER #run looping qiv slideshow on these pictures if [ $DEBUG -eq 1 ]; then echo Start qiv slideshow in background; fi cd $DISPLAYFOLDER ; nohup ~/qiv.sh &amp; if [ $DEBUG -eq 1 ]; then echo "And now it is "`date`; fi

Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” . : copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.

files |awk '{$1=""; print substr($0,2)}'|grep -i -v /docs/ &gt; jpegs.list # throw NUMFOLDERS or so random numbers for picture selection, select triplets of photos by putting # names into a file if [ $DEBUG -eq 1 ]; then echo Generate random filename triplets; fi ./random-files.pl -f $NUMFOLDERS -j jpegs.list -r $RANFILE # copy over these 60 jpegs if [ $DEBUG -eq 1 ]; then echo Copy over these random files; fi cat $RANFILE|while read line; do rclone copy remote:"${STARTFOLDER}/$line" $DISPLAYFOLDERTMP sleep $SLEEPINTERVAL done # rotate pics as needed if [ $DEBUG -eq 1 ]; then echo Rotate the pics which need it; fi cd $DISPLAYFOLDERTMP; ~/rotate-as-needed.sh cd ~ # kill any qiv slideshow if [ $DEBUG -eq 1 ]; then echo Killing old qiv and fbi slideshow; fi pkill -9 -f qiv sudo pkill -9 -f fbi pkill -9 -f m2.pl # remove old pics if [ $DEBUG -eq 1 ]; then echo Removing old pictures; fi rm -rf $DISPLAYFOLDER mv $DISPLAYFOLDERTMP $DISPLAYFOLDER #run looping fbi slideshow on these pictures if [ $DEBUG -eq 1 ]; then echo Start fbi slideshow in background; fi cd $DISPLAYFOLDER ; nohup ~/m2.pl &gt;&gt; ~/m2.log 2&gt;&amp;1 &amp; if [ $DEBUG -eq 1 ]; then echo "And now it is "`date`; fi

Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package. More recent rclone packages offer more options than what is shown here, but work basically the same way.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” .   – copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.


Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” . : copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.
files |awk ‘{$1=””; print substr($0,2)}’|grep -i -v /docs/ > jpegs.list

# throw NUMFOLDERS or so random numbers for picture selection, select triplets of photos by putting
# names into a file
if [ $DEBUG -eq 1 ]; then echo Generate random filename triplets; fi
./random-files.pl -f $NUMFOLDERS -j jpegs.list -r $RANFILE

# copy over these 60 jpegs
if [ $DEBUG -eq 1 ]; then echo Copy over these random files; fi
cat $RANFILE|while read line; do
rclone copy remote:”${STARTFOLDER}/$line” $DISPLAYFOLDERTMP
sleep $SLEEPINTERVAL
done

# rotate pics as needed
if [ $DEBUG -eq 1 ]; then echo Rotate the pics which need it; fi
cd $DISPLAYFOLDERTMP; ~/rotate-as-needed.sh
cd ~

# kill any qiv slideshow
if [ $DEBUG -eq 1 ]; then echo Killing old qiv and fbi slideshow; fi
pkill -9 -f qiv
sudo pkill -9 -f fbi
pkill -9 -f m2.pl

# remove old pics
if [ $DEBUG -eq 1 ]; then echo Removing old pictures; fi
rm -rf $DISPLAYFOLDER

mv $DISPLAYFOLDERTMP $DISPLAYFOLDER

#run looping fbi slideshow on these pictures
if [ $DEBUG -eq 1 ]; then echo Start fbi slideshow in background; fi
cd $DISPLAYFOLDER ; nohup ~/m2.pl >> ~/m2.log 2>&1 &

if [ $DEBUG -eq 1 ]; then echo “And now it is “`date`; fi

Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package. More recent rclone packages offer more options than what is shown here, but work basically the same way.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” .   – copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.


Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” . : copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.


Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package. More recent rclone packages offer more options than what is shown here, but work basically the same way.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” .   – copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related

Current approach and writeup for this photo frame effort.
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.


Needless to say, but I’d better say it, the STARTFOLDER in this script is particular to my own Google drive. Customize it as appropriate for your situation.

Then qiv (quick image viewer) is called with a bunch of arguments and some trickery to ensure proper display of files with spaces in the filenames (an anathema for Linux but my spouse doesn’t know that so I gotta deal with it). I call this script qiv.sh.


Here is the perl script which generates the random numbers and associates them to the file listing we’ve just made with rclone, random-files.pl.


Note that to display 60 pictures only 20 random numbers are used, and then the picture 2 prior and the picture two after the one selected by the random number are also displayed. This helps to provide, hopefully, some context to what is being shown without showing all those duplicate pictures that everyone takes nowadays.

There is an attempt to favor recently uploaded pictures but I really haven’t perfected that part of master.sh, it’s more of a thought at this point.

My crontab entries take care of starting a slideshow upon first boot as well as a daily pick of 60 new random pictures!


Use crontab -e to edit your crontab file.

qiv – an easy install
To install qiv

$ sudo apt-get install qiv

Rclone shown in some detail
The real magic is tapping into the Google Drive, which is done with rclone. There are older packages but they are awful by comparison so don’t waste your time on any other package.

$ sudo apt-get install rclone
$ rclone config


You sign in to your Google account with a regular browser.

After sign-in you see:

rclone wants to access your Google Account
<your_account>@gmail.com
This will allow rclone
to:

See, edit, create, and delete all of your Google Drive files

Make sure you trust rclone

After clicking Allow you get:


Note you can very well keep the root folder id blank. In my case we store all our pictures in one top-level folder and the nested folders get pretty deep, plus there’s a busload of other things on the drive, so I wanted to give rclone the best possible shot at running well. Still, listing our 40,000+ pictures takes 90 seconds or so.

Goofed up your config of rclone? No worries. Remove .config/rclone and start over.

Don’t forget to make all these scripts executable (chmod +x <script_name>:)or you will end up seeing messages like this:


Some noteworthy rclone commands
rclone ls remote: – lists all files, going recursively, no problem with MORE
rclone lsd remote: lists directories in top level of drive
rclone copy remote:”MaryDocs/Pictures and videos/Shutterfly books collection of photos/JJH birth photos/img2165.jpg” . : copies picture to current directory (does not create directory hierarchy)

Do a complete directory listing, capture the results in a file and see how long it took:
$ time rclone ls remote: > lsf-complete


My initial thought was to do a remote mount of the Google Drive onto a Raspberry Pi mount point, but it’s just so slow that it really provides no advantage to do it that way.

Some encountered issues
Well, I blew up on crontab, which in all my years working with linux/unix I’ve never done before. But I managed to fix it.

Prior to discovering rclone I made the mistake of using gdrivefs to create a mounted Google Drive – sounds great in principle, right? What a disaster. The files’ binary data were not correctly preserved when accessed through the mount though the size was! I have also never encountered a mounting software that corrupted files, but this piece of garbage does. One way to detect corruption in a binary file is to do a cksum (or md5sum, just be consistent and use one or the other) of source file and destination version of same file. The result should be the same number.

Imagined but avoided issue: JPEG orientation

I had prepared a whole python program to orient my pictures correctly, but lo and behold I “discovered” that the -l switch in qiv does that for you! So I actually ripped that whole unnecessary step out.

Conclusion
Re-purposing equipment I had lying around: Raspberry Pi 3, Pi Display, and 40,000 JPEG images on Google Drive, I put together a novel photoframe slideshow which randomly displays a different set of 60 pictures each day. It’s a nice way for us to be exposed to our collection of 17+ years of digital photos.

The qiv really is a quick image viewer, i.e., the slideshow runs clean, like a real one.

Long Todo list

  • Improve selection of recent pictures if we’ve just uploaded a bunch of pictures from our smartphones.
  • Hey, how about also showing some of those short videos we also shot with our camera phones and uploaded to Google Drive? And while we’re at it, re-purposing those cheap USB speakers I bought for RetroPi gaming to get the sound, or play a soundtrack!?
  • I realize that although the selection of the 20 anchor pictures is initially random, when they plus the 40 additional photos are presented for display additional order is imposed by the shell’s expansion of the regex and this has a tendency to make the pictures more chronologically organized than they would be by chance.

References and related
PiDisplay

RetroPi, the gaming emulation project for which I bought economical USB speakers.

The rclone home page.

A detailed write-up on using pipresents program where we had a Raspberry Pi drive a mixed media display 9pictures and videos) for a kiosk.

Categories
Admin Linux Network Technologies Raspberry Pi Security Web Site Technologies

How to test if a web site requires a client certificate

Intro
I can not find a link on the Internet for this, yet I think some admins would appreciate a relatively simple test to know is this a web site which requires a client certificate to work? The errors generated in a browser may be very generic in these situations. I see many ways to offer help, from a recipe to a tool to some pointers. I’m not yet sure how I want to proceed!

why would a site require a client CERT? Most likely as a form of client authentication.

Pointers for the DIY crowd
Badssl.com plus access to a linux command line – such as using a Raspberry Pi I so often write about – will do it for you guys.

The Client Certificate section of badssl.com has most of what you need. The page is getting big, look for this:

So as a big timesaver badssl.com has created a client certificate for you which you can use to test with. Download it as follows.

Go to your linux prompt and do something like this:
$ wget https://badssl.com/certs/badssl.com‐client.pem

If this link does not work, navigate to it starting from this link: https://badssl.com/download/

badssl.com has a web page you can test with which only shows success if you access it using a client certificate, https://client.badssl.com/

to see how this works, try to access it the usual way, without supplying a client CERT:

$ curl ‐i ‐k https://client.badssl.com/

HTTP/1.1 400 Bad Request
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 20 Jun 2019 17:53:38 GMT
Content-Type: text/html
Content-Length: 262
Connection: close

400 Bad Request

No required SSL certificate was sent


nginx/1.10.3 (Ubuntu)

 

Now try the same thing, this time using the client CERT you just downloaded:

$ curl ‐v ‐i ‐k ‐E ./badssl.com‐client.pem:badssl.com https://client.badssl.com/

* About to connect() to client.badssl.com port 443 (#0)
*   Trying 104.154.89.105... connected
* Connected to client.badssl.com (104.154.89.105) port 443 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* warning: ignoring value of ssl.verifyhost
* skipping SSL peer certificate verification
* NSS: client certificate from file
*       subject: CN=BadSSL Client Certificate,O=BadSSL,L=San Francisco,ST=California,C=US
*       start date: Nov 16 05:36:33 2017 GMT
*       expire date: Nov 16 05:36:33 2019 GMT
*       common name: BadSSL Client Certificate
*       issuer: CN=BadSSL Client Root Certificate Authority,O=BadSSL,L=San Francisco,ST=California,C=US
* SSL connection using TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
* Server certificate:
*       subject: CN=*.badssl.com,O=Lucas Garron,L=Walnut Creek,ST=California,C=US
*       start date: Mar 18 00:00:00 2017 GMT
*       expire date: Mar 25 12:00:00 2020 GMT
*       common name: *.badssl.com
*       issuer: CN=DigiCert SHA2 Secure Server CA,O=DigiCert Inc,C=US
&gt; GET / HTTP/1.1
&gt; User-Agent: curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.27.1 zlib/1.2.3 libidn/1.18 libssh2/1.4.2
&gt; Host: client.badssl.com
&gt; Accept: */*
&gt;
&lt; HTTP/1.1 200 OK
HTTP/1.1 200 OK
&lt; Server: nginx/1.10.3 (Ubuntu)
Server: nginx/1.10.3 (Ubuntu)
&lt; Date: Thu, 20 Jun 2019 17:59:08 GMT
Date: Thu, 20 Jun 2019 17:59:08 GMT
&lt; Content-Type: text/html
Content-Type: text/html
&lt; Content-Length: 662
Content-Length: 662
&lt; Last-Modified: Wed, 12 Jun 2019 15:43:39 GMT
Last-Modified: Wed, 12 Jun 2019 15:43:39 GMT
&lt; Connection: keep-alive
Connection: keep-alive
&lt; ETag: "5d011dab-296"
ETag: "5d011dab-296"
&lt; Cache-Control: no-store
Cache-Control: no-store
&lt; Accept-Ranges: bytes
Accept-Ranges: bytes
 
&lt;
 
 
 
 
  <style>body { background: green; }</style>

client.
badssl.com

 
* Connection #0 to host client.badssl.com left intact
* Closing connection #0

No more 400 error status – that looks like success to me. Note that we had to provide the password for our client CERT, which they kindly provided as badssl.com

Here’s an example of a real site which requires client CERTs:

$ curl ‐v ‐i ‐k ‐E ./badssl.com‐client.pem:badssl.com https://jp.nissan.biz/

* About to connect() to jp.nissan.biz port 443 (#0)
*   Trying 150.63.252.1... connected
* Connected to jp.nissan.biz (150.63.252.1) port 443 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* warning: ignoring value of ssl.verifyhost
* skipping SSL peer certificate verification
* NSS: client certificate from file
*       subject: CN=BadSSL Client Certificate,O=BadSSL,L=San Francisco,ST=California,C=US
*       start date: Nov 16 05:36:33 2017 GMT
*       expire date: Nov 16 05:36:33 2019 GMT
*       common name: BadSSL Client Certificate
*       issuer: CN=BadSSL Client Root Certificate Authority,O=BadSSL,L=San Francisco,ST=California,C=US
* NSS error -12227
* Closing connection #0
* SSL connect error
curl: (35) SSL connect error

OK, so you get an error, but that’s to be expected because our certificate is not one it will accept.

The point is that if you don’t send it a certificate at all, you get a different error:

$ curl ‐v ‐i ‐k https://jp.nissan.biz/

* About to connect() to client.badssl.com port 443 (#0)
*   Trying 104.154.89.105... connected
* Connected to client.badssl.com (104.154.89.105) port 443 (#0)
* Initializing NSS with certpath: sql:/etc/pki/nssdb
* warning: ignoring value of ssl.verifyhost
* Unable to load client key -8025.
* NSS error -8025
* Closing connection #0
curl: (58) Unable to load client key -8025.

Chrome gives a fairly intelligible error

Possibly to be continued…

Conclusion
We have given a recipe for testing form a linux command line if a web site requires a client certificate or not. thus it could be turned into a program

References and related
My article about ciphers has been popular.

I’ve also used badssl.com for other related tests.

Can you use openssl directly? You’d hope so, but I haven’t had time to explore it… Here are my all-time favorite openssl commands.

https://badssl.com/ – lots of cool tests here. The creators have been really thorough.

Categories
Linux Network Technologies Raspberry Pi

Live stream to YouTube from a Raspberry Pi + webcam or USB microphone

2021 pre-cap

I haven’t run this in two years. I just revived my scripts today, resuscitated an old Raspberry Pi, and voila, it’s pretty much good to go. When I moved to my new server in 2020 some of the scripts got mangled. I’m trying to fix those. For the record, I use the continuousaudio.sh script + ffmpegwireless6.sh mentioned below. That gives me a live audio stream on YouTube with a solid gray video. I’m researching further enhancements and will post those if I ever manage to pull them off.

What I would like to do is to have it interpret and respond to a couple audio commands as in “start recording” and “stop recording”. Now whether or not I can pull that off is an entirely different story. But you’ll  never know if you don’t try…

Intro
I’ve been looking at this off and on for awhile now. I finally made a breakthrough this week and started to generate some decent live streams on my YouTube channel, after a lot of misfires.

Note this is applicable for Raspbian Stretch Lite on a Raspberry Pi 3. However, I firmly believe it will work just the same for regular Raspbian Stretch.

There’s a lot of wrong, misleading or outdated information out there on the Internet. Hopefully this will help others to avoid wasting as much time as I had to do.

This project was prompted by my desire to make a more generalized fishcam! Described in this post, my original fishcam implementation – and I realized this form the get-go – has very limited applicability because very few people are in a position to have their own AWS server. And if you don’t know what you’re doing, please don’t run your own server – the security exposure is too great.

So I eventually realized that maybe I could generalize what I had done – essentially remove the dependency on the AWS server – by utilizing Youtube Live Streaming. And, I believe I was right. It’s still a work in progress however.

The command – ffmpeg
I was playing with ffmpeg. The version I am playing with now comes with Raspbian – no need to compile like in the bad old days. ffmpeg -version shows the version to be 3.2.12. I get the impression that its capabilities are version-dependent, so that’s why this information is particularly relevant in this case.

The details
In some of my early attempts I was getting a lot of this (looking at YouTube Live Dashboard)

Dashboard When stream is not quite right

Another attempt
Video works, audio like driving in a car with the windows down. For the record, the command was this:

ffmpeg \
-f alsa -i plughw:CARD=U0x46d0x825,DEV=0 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -g 10 -b:v 2500k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 2 -qscale 3 \
-b:a 96K \
-r 10 \
-s 1280x720 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

Video OK, audio choppy message

For the record, the bandwidth required was about 2100 kbps.

List the formats your video device supports

ffmpeg -f video4linux2 -list_formats all -i /dev/video0

Results using my Logitech Webcam

[video4linux2,v4l2 @ 0xcc45c0] Raw       :     yuyv422 :           YUYV 4:2:2 : 640x480 160x120 176x144 320x176 320x240 352x288 432x240 544x288 640x360 752x416 800x448 800x600 864x480 960x544 960x720 1024x576 1184x656 1280x720 1280x960
[video4linux2,v4l2 @ 0xcc45c0] Compressed:       mjpeg :          Motion-JPEG : 640x480 160x120 176x144 320x176 320x240 352x288 432x240 544x288 640x360 752x416 800x448 800x600 864x480 960x544 960x720 1024x576 1184x656 1280x720 1280x960
ffmpeg \
-f alsa -i plughw:CARD=U0x46d0x825,DEV=0 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -g 10 -b:v 1200 \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 2 -qscale 3 \
-b:a 128K \
-r 5 \
-s 640x480 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

Audio good, video not working

video terrible, but audio good!

It is not so pretty to use that hardware address for the Logitech webcam device. Where do you see that hardware address? Either a lsusb or a ls /dev/snd/by-id shows addresses of sound devices. I found a simpler substitute:

ffmpeg \
-f alsa -i plughw:1,0 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -g 10 -b:v 1200k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 2 -qscale 3 \
-b:a 128k \
-r 5 \
-s 640x480 \
-f flv rtmp://a.rtmp.youtube.com/live2/
With this audio's, not too bad, video's a bit choppy. Google reports the stream quality as OK, check resolution.


So I fix the bandwidth (which was a typo in the above, but one with an interesting result). I set video bandwidth to -b:v 1200k. Now the video is OK once again, but the audio is choppy again! Weird. bandwidth is about 1100 kbps.

This version had OK video and OK audio
ffmpeg \
-f alsa -i plughw:CARD=U0x46d0x825,DEV=0 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -g 10 -b:v 1600k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 2 -qscale 3 \
-b:a 128k \
-r 5 \
-s 640x480 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

But I keep getting inconsistent results! Sometimes a setting will work, and then I come back to it and it doesn’t. Weird.

Part of the problem is that I have no idea what I’m doing and I didn’t know when i was watching a livestream vs a recorded (on-demand) one! I have since learned to look for the little red Live button. A picture is worth 10^3 words in this case.

[Pic no longer available – try the thousand words instead!]

Observed used bandwidth is about 1450 kbits/sec. But still lots of dropped packets. Here is what ffmpeg reports. I’m not sure yet what most of it means:

[alsa @ 0x1502700] ALSA buffer xrun.
[alsa @ 0x1502700] Thread message queue blocking; consider raising the thread_queue_size option (current value: 8)
frame= 5828 fps=5.0 q=-1.0 Lsize=  205496kB time=00:19:26.20 bitrate=1443.5kbits/s dup=0 drop=11138 speed=   1x
video:187265kB audio:17449kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.382063%
[libx264 @ 0x15100e0] frame I:583   Avg QP: 9.41  size: 53819
[libx264 @ 0x15100e0] frame P:5245  Avg QP:13.53  size: 30578
[libx264 @ 0x15100e0] mb I  I16..4: 100.0%  0.0%  0.0%
[libx264 @ 0x15100e0] mb P  I16..4: 38.0%  0.0%  0.0%  P16..4: 60.7%  0.0%  0.0%  0.0%  0.0%    skip: 1.4%
[libx264 @ 0x15100e0] coded y,uvDC,uvAC intra: 93.7% 86.2% 82.4% inter: 77.8% 60.5% 34.1%
[libx264 @ 0x15100e0] i16 v,h,dc,p: 17% 23% 15% 45%
[libx264 @ 0x15100e0] i8c dc,h,v,p: 51% 21% 16% 11%
[libx264 @ 0x15100e0] kb/s:1315.22

The video for that run is here: https://youtu.be/oxJaZv0frGM

Suppressing Audio
This is what worked for me.

ffmpeg \
-f lavfi -i anullsrc=channel_layout=stereo:sample_rate=44100 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -g 10 -b:v 1600k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 2 -qscale 3 \
-b:a 128k \
-r 5 \
-s 640x480 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

That is working great – showing the video as before but now with a silent audio track.

Increase Video Quality
Here I’ve increased video quality a tad by requesting more fps (10) and making qscale 0 (which means highest quality).
https://www.youtube.com/watch?v=5Aall8w4Y3E

ffmpeg \
-f alsa -i plughw:1,0 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -b 3000k -g 20 -b:v 1800k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 4 -qscale 0 \
-b:a 128k \
-r 10 \
-s 640x480 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

Bitrate was about 1700 kbps. Quality is maybe a little better. Audio still leaves something to be desired.

Still better video quality

ffmpeg \
-f alsa -i plughw:1,0 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -b 3000k -g 60 -b:v 2000k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 4 -qscale 0 \
-b:a 128k \
-r 30 \
-s 640x480 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

What is observed to happen is that ffmpeg actually chooses 15 fps rather than 30. I’ve read it decides what it is able to do, so maybe that’s the highest fps it can deliver. Video is pretty smooth (See my Livestream link in references if I happen to have it running. Otherwise I will create a video link.) No drops are recorded, but the sound, though not terrible, has some pops. Bandwidth used is about 1900 kbps. So this is definitely my best effort yet. YouTube complains about the unsupported video size of 640×480, but it permits it and I don’t think it’s a real problem.

Reducing bandwidth
This one is pretty good overall. I have no idea why lowering the audio bandwidth might help. It’s counter intuitive. But video motion is not bad – just a tad blurred. I guess q=23. Audio has good patches and not-as good patches. Not as good spots are staticky, not washboard bad. Total bandwidth used is about 611 kbps. So a great compromise. Why does raising the video bandwidth lower the audio quality? I have no idea… The settings below worked for maybe 20 minutes, then YouTube said this Video is unavailable. I at least found out something about that. That shows a problem with the player, not (for once) your stream. so since I’m only concentrating on the stream, that’s good news. So actually it delivered good sound for three hours straight with a few staticky spots.

ffmpeg \
-thread_queue_size 1024 \
-f alsa -i plughw:1,0 \
-thread_queue_size 256 \
-f v4l2 -i /dev/video0 \
-c:v libx264 -pix_fmt yuv420p -preset ultrafast -g 30 -b:v 450k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 4 -q:v 5 \
-q:a 0 \
-b:a 64k \
-r 15 \
-s 480x320 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

The audio is creepily sensitive, easily picking up conversations in adjacent rooms.

But then I monkeyed around with the settings, got the washboard sound, came back to this one – a known good – and got washboard audio! What the heck? Why isn’t it consistent?? No idea… Maybe it’s the player that gets messed up?? Now I’m running it again and it’s OK.

Bandwidth talk
It’s important to talk about bandwidth if you haven’t given this any real thought. You have to have a halfway decent broadband connection for this to work, you see? If you have a mid-speed cable modem or DSL, you have much lower upload than download speeds, and you may not be able to pull off a reliable 1.5 mbps upload. For those lucky enough to have Verizon FIOS this is a non-issue. But for instance in the high school where I volunteer they have throttled the guest WiFi network to such an extent that achieving this modest 1.5 mbps is going to present a real challenge. If you rely on a phone’s hotspot you will also probably be unable to get such a speed. So I may look at more ways to reduce the bandwidth required in the future.

Check your bandwidth using speedcheck.org.

And between YouTube and your ISP, it just seems the whole thing about live video broadcasting seems, well, delicate. Stream Health varies between oK, to Excellent to not receiving – all during the same streaming session! It often takes five minutes or so for the stream to appear to be working.

Comparing two webcams
Someone picked up a really cheap DI Chatcam at Microcenter in Paterson. I think that’s Digital Innovations Chatcam. It’s cute. It has a big clip on the end and shines white LEDs when it’s on. I think it was about $12. With the exact same ffmpeg settings (with audio suppressed), the quality was not nearly as good as with the Logitech webcam. Here’s a link to the YouTube video made with the chatcam: https://www.youtube.com/watch?v=OI2IRV1i__k. Note that it has a ministereo plug for audio. I didn;’t even plug it in now that I know how to suppress audio!

The Logitech model is a C525. It was a refurbished model which cost me about $27.The comparable Logitech webcam test is here: https://www.youtube.com/watch?v=L7ZYaRJR7mQ

I need to re-run this test now that I know how to increase the video quality.

A breakthrough: publishing an audio-only stream to YouTube
Besides covering your lens with tape, what’s a software way to blacken the video and concentrate on producing the best audio I wondered?

ffmpeg \
-thread_queue_size 4096 \
-f alsa -i plughw:1,0 \
-thread_queue_size 128 \
-f lavfi -i color=color=darkgray \
-c:v libx264 -pix_fmt yuv420p -b:v 100k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 8 \
-b:a 128k \
-r 30 \
-s 1280x720 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

The above gives me good audio, and a sold gray background. I love it – for recording band practice or whatever. The breakthrough is that we can avoid wasting cpu cycles on processing input video but just use a color. Thanks Stackoverflow for the tip. Used bandwidth is about 150 kbs – basically nothing! YouTube Dsahboard complains:

OK Video output low
The stream's current bitrate (138.00 Kbps) is lower than the recommended bitrate. 
We recommend that you use a stream bitrate of 2500 Kbps.

But of course that is bogus because that assumes we are trying to put out a rich 1280×720 video, which we are not.

Then eventually YouTube has this complaint:

Bad Bad video settings
Please use a keyframe frequency of four seconds or less. Currently, keyframes are not being sent often enough, which will cause buffering. 
The current keyframe frequency is 8.5 seconds. Note that ingestion errors can cause incorrect GOP (group of pictures) sizes.

Yet the stream does not seem to suffer in any noticeable way from this problem.

For good measure, we add a few extra arguments allow us to remove the keyframes warning. We need to use the -g parameter (group of pictures) at about twice our frame rate, plus, maybe, a no-scenecut argument. Here’s that version.

ffmpeg \
-thread_queue_size 4096 \
-f alsa -i plughw:1,0 \
-thread_queue_size 128 \
-f lavfi -i color=color=darkgray \
-c:v libx264 -pix_fmt yuv420p -g 60  -x264opts no-scenecut -b:v 150k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 8 \
-b:a 128k \
-r 30 \
-s 1280x720 \
-f flv rtmp://a.rtmp.youtube.com/live2/KEY

Actual fps is 25, quality is 26 and bitrate is 145 kbps. But audio quality is good. I hear white noise in the background, but hey, this isn’t exactly professional equipment we’re working with. But this is a great solution for an audio-only recording that goes straight out to YouTube. stability is also good.

The load average is high – 3.6 (use top to watch it), almost all of it taken by ffmpeg. So it appears ffmpeg is really working it to produce this audio stream. That makes me suspect it just gets overwhelmed when it’s an audio + video stream? Because I never did find setting swhich produced good quality for both…

Switch to Wifi and Yet another problem surfaces
It seems that with this livestreaming project everything that should just work doesn’t! I had been doing all my testing used wired Ethernet connection and WiFi disabled. anticipating a portable solution, I tried it using WiFi and no Ethernet cable. And washboard audio reappeared. quite often ffmpeg hangs as well. I tried a zillion experiments and now my revelation is that essentially, though we tried to minimize and trivialize video, we were probably still overwhelming the CPU. So I reasoned that these actions will make the load easier on the CPU, without compromising the audio quality:

– reduce frame per second dramatically
– reduce key frames
– reduce video size

And…yes, these things in combination really did help and permit me to run over WiFi now. This version, put inside a script I call ffmpegwireless6.sh, looks like this:

#!/bin/sh
KEY=691w-uh0z-kx59-c6a7-5xqi # example key
ffmpeg \
-thread_queue_size 4096 \
-f alsa -i plughw:1,0 \
-thread_queue_size 64 \
-f lavfi -i color=color=darkgray \
-c:v libx264 -pix_fmt yuv420p -g 18  -x264opts no-scenecut -b:v 50k \
-bufsize 512k \
-acodec libmp3lame -ar 44100 \
-threads 8 \
-b:a 128k \
-r 5 \
-s 480x320 \
-f flv rtmp://a.rtmp.youtube.com/live2/$KEY

It doesn’t start consistently, however, but if you run it enough times it’ll go. So, to provide reliability I also scripted around these deficiencies: I decided to just keep trying to start up ffmpegwireless.sh until I jhave evidence it’s working. I call that script masterwireless.sh:

#!/bin/sh 
# DrJ 5/2019 
LOG="ff.log"`date +%m-%d-%y:%H:%M` 
while /bin/true; do 
nohup ./ffmpegwireless6.sh$LOG 2>&1 & 
sleep 7 
# want s.th like 
#Frame= 84 fps= 11 q=16.0 size= 43kB time=00:00:07.50 bitrate= 47.1kbits/s dup=0 drop=431 speed=0.991x 
#Frame= 84 fps= 11 q=16.0 size= 43kB time=00:00:07.50 bitrate= 47.1kbits/s dup=0 drop=431 speed= 1x 
FFOUT=`tail -1 $LOG` 
echo "last line is $FFOUT" 
KB=`echo $FFOUT|awk '{print $(NF-4)}'` 
echo "orig KB: $KB" 
KB=`echo $FFOUT|awk '{print $(NF-5)" "$(NF-4)}'|sed 's/kbits.*//'|awk '{print $NF}'` 
date 
echo "KB is: $KB" 
if [ $KB -gt 129 2>/dev/null ]; then 
# let our master process exit - we've got a good audio stream 
  echo "Exiting at *** "`date` 
  exit 
else 
# didn't work out: restart and try again 
  echo "*** Restarting ffmpeg at *** "`date` 
  pkill -9 -f 'ffmpeg ' 
fi 
done

And…it works great! Very briefly what it does is t that it calls ffmpegwireless6.sh and backgrounds it, then tests its output. It gives it a few seconds to get going, then kills it unless observed streaming bandwidth is a healthy 135 kbps or so (essentially the video takes almost no bandwidth in ffmpegwireless6.sh.)

Putting it all together – livestreaming audio stream to YouTube automatically upon boot up
So I want to drag this thing to a performance and have a confederate with minimal technical know-how start it up. So basically I want it to start livestreaming when the RasPi is powered up. To do that I made this crontab entry (using crontab -e):

@reboot sleep 20; /home/pi/masterwireless.sh &gt; ff.log 2&gt;&amp;1

It takes a few minutes to get going, but it’s been extremely reliable. It’s started a stream successfully more than 10 times out of 10, at least when I was using my home WiFi connection. When I switched to my phone’s Hotspot, I had one error out of five attempts. The one bad stream just would not start according to Youtube, although per the stats from the log files showed the stream reached the usual good bandwidth. So I don’t know…

And once the stream starts, it is running uninterrupted for hours, anywhere from three to six hours.

Eventually I want to write an API program to automatically check the stream. But before then I may just introduce a refined script which checks the output and restarts ffmpeg when it has ended.

For the record, a typical ff.log file looks like this:

frame=   43 fps= 43 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A dup=0 drop=164 speed=   0x    ed=   0x
orig KB: dup=0
Tue  7 May 12:32:08 BST 2019
KB is: dup=0
*** Restarting ffmpeg at *** Tue 7 May 12:32:08 BST 2019
frame=  213 fps= 35 q=8.0 size=      47kB time=00:01:40.91 bitrate=   3.8kbits/s dup=0 drop=847 speed=16.7x
orig KB: 3.8kbits/s
Tue  7 May 12:38:53 BST 2019
KB is: 3
*** Restarting ffmpeg at *** Tue 7 May 12:38:53 BST 2019
illed=   86 fps= 14 q=8.0 size=     104kB time=00:00:06.21 bitrate= 136.7kbits/s dup=0 drop=336 speed=1.03x
orig KB: 136.7kbits/s
Tue  7 May 12:39:00 BST 2019
KB is: 136
Exiting at *** Tue 7 May 12:39:00 BST 2019

The other file, which has a name like ff.log05-07-19:12:32, looks more like this:

ffmpeg version 3.2.12-1~deb9u1+rpt1 Copyright (c) 2000-2018 the FFmpeg developers
  built with gcc 6.3.0 (Raspbian 6.3.0-18+rpi1+deb9u1) 20170516
  configuration: --prefix=/usr --extra-version='1~deb9u1+rpt1' --toolchain=hardened --libdir=/usr/lib/arm-linux-gnueabihf -
-incdir=/usr/include/arm-linux-gnueabihf --enable-gpl --disable-stripping --enable-avresample --enable-avisynth --enable-gn
utls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libebur
128 --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --ena
ble-libmp3lame --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librubberband --enable-
libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --ena
ble-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxvid --enable-libzmq --enab
le-libzvbi --enable-omx --enable-omx-rpi --enable-mmal --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --e
nable-libiec61883 --arch=armhf --enable-chromaprint --enable-frei0r --enable-libopencv --enable-libx264 --enable-shared
  libavutil      55. 34.101 / 55. 34.101
  libavcodec     57. 64.101 / 57. 64.101
  libavformat    57. 56.101 / 57. 56.101
  libavdevice    57.  1.100 / 57.  1.100
  libavfilter     6. 65.100 /  6. 65.100
  libavresample   3.  1.  0 /  3.  1.  0
  libswscale      4.  2.100 /  4.  2.100
  libswresample   2.  3.100 /  2.  3.100
  libpostproc    54.  1.100 / 54.  1.100
Guessed Channel Layout for Input Stream #0.0 : stereo
Input #0, alsa, from 'plughw:1,0':
  Duration: N/A, start: 1557229134.030863, bitrate: 1536 kb/s
    Stream #0:0: Audio: pcm_s16le, 48000 Hz, stereo, s16, 1536 kb/s
Input #1, lavfi, from 'color=color=darkgray':
  Duration: N/A, start: 0.000000, bitrate: N/A
    Stream #1:0: Video: rawvideo (I420 / 0x30323449), yuv420p, 320x240 [SAR 1:1 DAR 4:3], 25 tbr, 25 tbn, 25 tbc
[libx264 @ 0x12db850] VBV maxrate unspecified, assuming CBR
[libx264 @ 0x12db850] using SAR=8/9
[libx264 @ 0x12db850] using cpu capabilities: ARMv6 NEON
[libx264 @ 0x12db850] profile High, level 2.1
[libx264 @ 0x12db850] 264 - core 148 r2748 97eaef2 - H.264/MPEG-4 AVC codec - Copyleft 2003-2016 - http://www.videolan.org/
x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_ran
ge=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=8 lookahead_threads=1 sl
iced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 di
rect=1 weightb=1 open_gop=0 weightp=2 keyint=18 keyint_min=1 scenecut=0 intra_refresh=0 rc_lookahead=40 rc=cbr mbtree=1 bit
rate=50 ratetol=1.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 vbv_maxrate=50 vbv_bufsize=512 nal_hrd=none filler=0 ip_ratio=1.40
 aq=1:1.00
Output #0, flv, to 'rtmp://a.rtmp.youtube.com/live2/KEY
  Metadata:
    encoder         : Lavf57.56.101
    Stream #0:0: Video: h264 (libx264) ([7][0][0][0] / 0x0007), yuv420p, 480x320 [SAR 8:9 DAR 4:3], q=-1--1, 50 kb/s, 5 fps
, 1k tbn, 5 tbc
    Metadata:
      encoder         : Lavc57.64.101 libx264
    Side data:
      cpb: bitrate max/min/avg: 0/0/50000 buffer size: 512000 vbv_delay: -1
    Stream #0:1: Audio: mp3 (libmp3lame) ([2][0][0][0] / 0x0002), 44100 Hz, stereo, s16p, 128 kb/s
    Metadata:
      encoder         : Lavc57.64.101 libmp3lame
Stream mapping:
  Stream #1:0 -&gt; #0:0 (rawvideo (native) -&gt; h264 (libx264))
  Stream #0:0 -&gt; #0:1 (pcm_s16le (native) -&gt; mp3 (libmp3lame))
Press [q] to stop, [?] for help
frame=   69 fps= 27 q=8.0 size=      45kB time=00:00:02.820 bitrate= 138.6kbits/s dup=0 drop=256 speed= 1.1x
frame=   79 fps= 17 q=2.0 size=      79kB time=00:00:04.80 bitrate= 134.6kbits/s dup=0 drop=308 speed=1.04x
frame=   91 fps= 13 q=8.0 size=     112kB time=00:00:06.80 bitrate= 134.8kbits/s dup=0 drop=348 speed=1.04x
frame=  101 fps= 11 q=8.0 size=     153kB time=00:00:09.22 bitrate= 135.0kbits/s dup=0 drop=388 speed=1.03x
frame=  112 fps= 10 q=3.0 size=     186kB time=00:00:11.40 bitrate= 133.8kbits/s dup=0 drop=440 speed=1.02x
av_interleaved_write_frame(): Broken pipe time=05:28:03.40 bitrate= 134.2kbits/s dup=0 drop=393880 speed=   1x
etc.
    Last message repeated 1 times
Error writing trailer of rtmp://a.rtmp.youtube.com/live2/KEY: Broken pipeframe=98474 fps=5.0 q=-1.0 Lsize=  322492kB time=05:28:14.00 bitrate= 134.1kbits/s dup=0 drop=393888 speed=0.998x
video:2213kB audio:306620kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 4.422897%
[libx264 @ 0x125c850] frame I:5471  Avg QP: 0.00  size:    80
[libx264 @ 0x125c850] frame P:27354 Avg QP: 0.00  size:    25
[libx264 @ 0x125c850] frame B:65649 Avg QP: 0.00  size:    17
[libx264 @ 0x125c850] consecutive B-frames: 11.1%  0.0%  0.0% 88.9%
[libx264 @ 0x125c850] mb I  I16..4: 100.0%  0.0%  0.0%
[libx264 @ 0x125c850] mb P  I16..4:  0.0%  0.0%  0.0%  P16..4:  0.0%  0.0%  0.0%  0.0%  0.0%    skip:100.0%
[libx264 @ 0x125c850] mb B  I16..4:  0.0%  0.0%  0.0%  B16..8:  0.0%  0.0%  0.0%  direct: 0.0%  skip:100.0%
[libx264 @ 0x125c850] 8x8 transform intra:0.0%
[libx264 @ 0x125c850] coded y,uvDC,uvAC intra: 0.0% 0.0% 0.0% inter: 0.0% 0.0% 0.0%
[libx264 @ 0x125c850] i16 v,h,dc,p: 95%  0%  5%  0%
[libx264 @ 0x125c850] i8c dc,h,v,p: 100%  0%  0%  0%
[libx264 @ 0x125c850] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 0x125c850] kb/s:0.92
Conversion failed!

CPU load average is around 1 or so – much less than before. So I think my ideas are on the right track. Why send 30 frames or whatever each and every second to Youtube just to display a gray screen? The CPU has to work to do that. As long as ffmpeg + Youtube has the intelligence to paste together audio snippets 1/5th second in length five times each second the audio should be taken care of, we’re not playing with the sampling rate or anything – is how I reasoned. Key frames are some sort of overhead as well since they’re extra things ffmpeg has to periodically do. Youtube wants one at least every four seconds. We get really close to that limit by multiplying fps * 3.6 s = 5 * 3.6 = 18 for our group-of-pictures (g) parameter. Previously we were sending a key frame more frequently – every two seconds.

Unreliability
Running this command is still hit-or-miss. As often as not it hangs, and then, if it does not hang, as often as not it often outputs washboard audio. You just <Ctrl-C> to get out of it if hangs, or type “q” if it is producing washboard audio.

Note carefully the bandwidth being used, which ffmpeg reports every second. If it is < 128 kbps, you’re hosed and have washboard audio. If it’s about 135 kbps or higher, you’re good. You don’t even need to waste time fiddling with Youtube’s live_dashboard to listen to it. You get this feedback immediately from ffmpeg. And I intend to use these same observed behaviors to script around ffmpeg’s flakiness and keep restarting it automatically until it is producing a good quality audio stream!

Improved startup
This script, which I call continuousaudio.sh, has some debugging at the beginning, then loops to ensure there is always an audio stream being live-streamed as long as the Pi has power. It has been extremely reliable. I settled on this one for my own purposes.

#!/bin/sh
# drJ 5/2019
LOG="ff.log"`date +%m-%d-%y:%H:%M`
# some info for debugging problems
echo "***********"
date; ip add; ping -c2 8.8.8.8; lsusb
nohup ./ffmpegwireless6.sh > $LOG 2>&1 &
while /bin/true; do
 sleep 7
# want s.th like
#Frame=   84 fps= 11 q=16.0 size=      43kB time=00:00:07.50 bitrate=  47.1kbits/s dup=0 drop=431 speed=0.991x
#Frame=   84 fps= 11 q=16.0 size=      43kB time=00:00:07.50 bitrate=  47.1kbits/s dup=0 drop=431 speed= 1x
 FFOUT=`tail -1 $LOG`
# next line only for DrJ debugging - lines are long
#echo "last line is $FFOUT"
# use gawk instead of awk to parse long lines
 KB=`echo $FFOUT|gawk '{print $(NF-5)" "$(NF-4)}'|sed 's/kbits.*//'|gawk '{print $NF}'`
 echo "orig KB: $KB"
 KB=$(echo $KB|sed s/\\..*//)
 date
 echo "KB is: $KB"
 if [ $KB -gt 129 2>/dev/null ]; then
# stream looks good - do nothing
   echo -n ""
 else
# didn't work out: restart and try again
  echo "*** Restarting ffmpeg at *** "`date`
  pkill -9 -f 'ffmpeg '
  nohup ./ffmpegwireless6.sh > $LOG 2>&1 &
 fi
done

gawk

Eventually I found I needed to use gawk instead of awk in continuousaudio.sh because the number of fields exceeded the max of roughly 32700 in the line I was parsing. To install gawk:

$ sudo apt-get install gawk

Note it still calls ffmpegwireless6.sh, which I believe I have provided above.

ff.log now looks like this:

**********
Fri 31 May 01:10:59 BST 2019
1: lo: &lt;loopback,up,lower_up&gt; mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: &lt;no-carrier,broadcast,multicast,up&gt; mtu 1500 qdisc pfifo_fast state DOWN group default qlen 1000
    link/ether b8:27:eb:11:fc:06 brd ff:ff:ff:ff:ff:ff
3: wlan0: &lt;broadcast,multicast,up,lower_up&gt; mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether b8:27:eb:44:a9:53 brd ff:ff:ff:ff:ff:ff
    inet 192.168.1.170/24 brd 192.168.1.255 scope global wlan0
       valid_lft forever preferred_lft forever
    inet6 fe80::1119:b46a:cb69:63c9/64 scope link
       valid_lft forever preferred_lft forever
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=56 time=14.6 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=56 time=17.4 ms
 
--- 8.8.8.8 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 14.671/16.065/17.460/1.400 ms
Bus 001 Device 004: ID 046d:0825 Logitech, Inc. Webcam C270
Bus 001 Device 005: ID 0424:7800 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub
Bus 001 Device 002: ID 0424:2514 Standard Microsystems Corp. USB 2.0 Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
last line is frame=   19 fps=0.0 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A dup=0 drop=69 speed=   0x    ^Mframe=   39 fps= 39 q=0.0 size=       0kB time=00:00:00.00 bitrate=N/A dup=0 drop=150 speed=   0x    ^M
orig KB: dup=0
Fri 31 May 01:11:07 BST 2019
KB is: dup=0
*** Restarting ffmpeg at *** Fri 31 May 01:11:07 BST 2019
last line is frame=  193 fps= 35 q=8.0 size=     100kB time=00:00:27.60 bitrate=  29.6kbits/s dup=0 drop=764 speed=4.99x    ^Mframe=  195 fps= 32 q=8.0 size=     108kB time=00:00:28.03 bitrate=  31.4kbits/s dup=0 drop=775 speed=4.65x    ^M
orig KB: 31.4
Fri 31 May 01:11:36 BST 2019
KB is: 31
*** Restarting ffmpeg at *** Fri 31 May 01:11:36 BST 2019
...
&lt;/broadcast,multicast,up,lower_up&gt;&lt;/no-carrier,broadcast,multicast,up&gt;&lt;/loopback,up,lower_up&gt;

My crontab now looks like this:

@reboot sleep 20;/home/pi/continuousaudio.sh > ff.log 2>&1

Portability
I wanted to record a practice session in my house where no Ethernet port is available (hence I had to get WiFi working, which I believe I have). And I wanted convenience – to not worry about being tethered to the wall by an adapter. So I decided to look for an economical power solution for Raspberry Pi. And I found the ones purpose-built are just too expensive to justify. Pijuice, I’m talking about you. So, really, I realized any old portable USB power stick would work. But I wanted something which could last hours. This Omars 10000 mAh portable USB charger seemed like it would do the trick. $16. And it did. It works great! Two hours later, the LEDs show three bars instead of four, so I think this will supply power for about 8 – 9 hours if I pushed it. And it has the form factor of a smartphone. Ideally I’d want a little on/off switch to avoid plugging/unplugging the power cable, but I didn’t find that as of yet. Maybe there’s a cheap USB cable with that…?

So now I’m not tethered by Ethernet cables nor by a power plug. See where this is progressing? If I use my smartphone’s hotspot I should be able to livestream anywhere I can get a signal, so, for instance, at band performances. I haven’t tried that yet, but I’m hopeful…

YouTube quirks
As previously mentioned (I think)( you need to be enabled for livestreaming. It takes about 24 hours for the approval. I suppose they check to make sure you aren’t a perceived threat.

Recording NPR will give you a copyright violation flag! This has happened to me more than once. I think because they play snippets of new music which are flagged.

Lag. I’ve seen lag time as short as four seconds and maybe as long as 20 seconds or so. It is never instantaneous.

My longest video was 20 hours but the processing took days. In fact I’m not sure it ever completed. So I guess the service falls apart after video lengths of I don’t know, maybe 12 hours or so. So if the desire is to have a continuous security webcam I guess you’ll have to break it into chunks. That’s what I’m thinking about next.

A livestream gets converted to a video by YouTube. That takes awhile – maybe as long as the video length itself is? It slaps a date and time onto the video which you see in your video manager. Unfortunately, using this ffmpeg streaming method it chooses the Pacific standard time timezone. I actually don’t see a simple way to change that either. It may require use of the API, which is beyond what I’m willing to tackle right now. So for me, being in the Eastern time zone all the timestamps are off by three hours, which is kind of annoying.

I wondered, does my livestream ID remain constant, or will it change from broadcast to broadcast? This is important for future use of the API. Well, it changes each time I start a new livestream, even though I use a single (my own) account. Each livestream gets a unique ID which then becomes the ID for the DVR of the video which you can view on-demand. And this ID is the part that changes in the URL of an “unpublished” Youtube video. Say your unpublished livestream is
https://www.youtube.com/watch?v=r1wtZwQ-Tk8.
The part of the URL following the v=, namely, in this example, r1wtZwQ-Tk8, is the ID of that video. I would say YouTube tries to be somewhat robust and will not declare your stream has ended until maybe 30 seconds after you have stopped your program. Or maybe it’s a minute or two, I’m not really sure. But I’ve seen that if you restart the streaming quickly enough you’ll be put onto that same livestream. If on the other hand you wait long enough until you see in live_dashboard that stream ended message then It will assign yuo a new video ID if you start your stream again – and don’t forget to reload the live_dashboard page so it can pick up the new ID.

Can you pause a livestream, and later resume, keeping the same URL? In a word, No. Unfortunately. Youtube livestreaming is pretty limited in this way. And how useful would that be? I would use my smartphone to control ffmpeg on my Raspberry Pi to pause our band practice during our lengthy chat breaks, keeping the stream focussed on the music. But no… Not possible.

Logitech webcam quirks
When you pull both video and audio from your Logitech webcam the usage LED illuminates as you’d expect. However, when you’re pulling just the audio, as I show above, that LED does not illuminate, yet it is being used to record all the sounds in its vicinity. I guess I have accidentally and unintentionally stumbled upon a stealth mode, which is a little disconcerting.

Yeti USB microphone quirks
A Yeti mic is extremely sensitive and seems more suited for conversation than music recording in my opinion. Even with the gain all the way down (a must) a loud sound is often distorted. I felt the omni recording mode was the worst in this regard. Stereo recording tolerated sounds better. But, if you want to pikc up every little sound, Yeti is great. More importantly to me, it just worked with the USB settings I used for Logitech. I didn’t have to change a single thing in the way I used ffmpeg.

Testing if the livestream is still running
My idea to do this is to use the YouTube API and periodically test if the livestream is still working. I have read that it can go down for various reason, and there is no goo way from within ffmpeg itself to tell that your stream is no longer live! It will make for a good project to test the livestream using the Google Developer’s API. that will be a separate post if I ever get it working. If it’s found to be down, the Pi could restart ffmpeg, in my thinking.

To do list
I never really perfected the video. Audio I got pretty well.
I will borrow my friend’s Yeti USB mic to see how my audio stream works with a high quality microphone. DONE.
I would like to have a simple external control to turn stream off/ on, whether it is physical or virtual. DONE – see references.
Scripting to monitor stream and restart it once it fails – to have a recording 24×7 like an audio-only security camera. DONE – continuousaudio.sh as documented above.
Pause feature. PARTIALLY DONE.

Conclusion
A Raspberry Pi 3 running Raspbian Stretch Lite is used, along with a Logitech USB webcam, to livestream to YouTube. I showed how to stream video-only with a silent audio track. Then I turned it around and spent most of my time putting a virtual piece of tape over the lens and doing an audio-only livestream. This, after a crap-load of testing and tweaking, eventually began to work in a reliable fashion. Then I showed how to launch the audio-only livestream upon power-up of the Ras Pi.

Since it is a Raspberry Pi, this whole thing lends itself to portability and interesting use cases. With a $17 portable USB battery source and your own Hotspot, you can stream (audio at least) from anywhere you have 4G cell signal – good for recording a banquet, your band performance, or any other long, live event.

I spoke about some of the many quirks of YouTube which are relevant to this project.

References and related
Where I debug YouTube’s messages: https://www.youtube.com/live_dashboard

Fishcam implemented with Raspberry Pi + webcam + help of my AWS server.

One of my test videos: https://youtu.be/oxJaZv0frGM

Check your upload bandwith: speedtest.net

YouTube’s links have me confused. If you’re trying to produce a Live Stream you’ll want the live dashboard page to watch it and check its quality as Youtube judges it. Here’s that link: https://www.youtube.com/live_dashboard

Use ffmpeg to deal with live input audio and make a matrix LED dance in real time: Raspberry Pi + LED Matrix Display project

Microcenter in Paterson, NJ – best to visit in person, or so I have been told.

My livestream is https://www.youtube.com/watch?v=r1wtZwQ-Tk8

Put virtual tape over your lens by using this tip discussed in Stackoverflow!

Portable, proven (by me) economical USB power supply for your Raspberry Pi – $16.

Economical on/off switch for your Raspberry Pi. This is a great way to stop having to pull out/push in power connectors from your micro USB power source. $10 gets you a four-pack! https://smile.amazon.com/iUniker-Raspberry-Switch-Supply-MicroUSB/dp/B07CTHKXDW/ref=sr_1_2_sspa?keywords=raspberry+pi+on+off+switch&qid=1559477662&s=gateway&sr=8-2-spons&psc=1

Categories
Admin Linux SLES

How to add private root CAs in SLES or Redhat or Debian

Intro
From time-to-time I run my own PKI infrastructure, namely issuing my own certificates from my private root CA. I wanted this root CA to be recognized by Linux utilities running on Suse Linux (SLES), in particular, lftp, which I was trying to use to access an ftps site, which itself is a post for another day. In other words, how do you add a certificate to the certificate store in linux?

The details
Let’s say you have your root certificate in the standard form like this example

-----BEGIN CERTIFICATE-----
MIIIPzCCBiegAwIBAgITfgAAAATHCoXJivwKLQAAAAAABDANBgkqhkiG9w0BAQsF\nADA2MQswCQYD
VQQGEwJERTENMAsGA1UEChMEQkFTRjEYMBYGA1UEAxMPQkFTRiBS\nb290IENBIDIxMB4XDTE3MDgxMDEyNDAwOFoXDTI4MDgxMDEyNTAwOFowXDETMBEG\nCgm
...
PEScyptUSAaGjS4JuxsNoL6URXYHxJsR0bPlet\nSct
-----END CERTIFICATE-----

Then you can put the certificate inline and within one script install it so that it permanently joins the other root CAs in /etc/ssl/certs with a script like this example:

DrJ_Root_CA="-----BEGIN CERTIFICATE-----\nMIIIPzCCBiegAwIBAgITfgAAAATHCoXJivwKLQAAAAAABDANBgkqhkiG9w0BAQsF\nADA2MQswCQYD
VQQGEwJERTENMAsGA1UEChMEQkFTRjEYMBYGA1UEAxMPQkFTRiBS\nb290IENBIDIxMB4XDTE3MDgxMDEyNDAwOFoXDTI4MDgxMDEyNTAwOFowXDETMBEG\nCgm
SJomT8ixkARkWA05FVDEUMBIGCgmSJomT8ixkARkWBEJBU0YxFjAUBgoJkiaJ\nk/IsZAEZFgZCQVNGQUQxFzAVBgNVBAMTDkJBU0YgU1VCIENBIDIzMIICIjAN
Bgkq\nhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAqrfoKxrCPCw/u2PBEaAwW/VHLxBw6JNi\n42F3EhXmligGb/Uu4kcWO016IGFatVrPhdAtShAqmTXis0w57hW
jn1Iptvo7rROY\nGPmH7aSW/fYM/x2Lln7NlltayXspWawqBzWzYGADodyjn/Z5TaLYaG8lajiabCM5\nUJDhlZ/SUR3xylqIIFaQK3k2twjeGoxobhbr9hJcQZ
fXF0V5FCSCzJExDYma6bs1\nZtyqP/yHaiOeWXGdnqM9EPfT8kmIC42ZXq7s2JZI5OUflJBbaebYEbuDad6Rh19E\nRchXABLe68+TF/4AZCw16iRwRgq/2Re2W
WPMtVomyZ2txvn51iizqBkdVGzIRklC\n3yIv5MRzDFTfG940/tSAomHsz+RdGbL+NCBeWSY+rnJQdExJ7bLXFLVsTNGL68lP\nMuYrkxYQKWRtVhvQCHsdd5E0
t9QR4iY1JLWQxq3GHy98tBbCGiKMpBbuj/9I/E6c\nGrikouv2QyNnCN34PXpUxTQmDj5LZGV9w2faqpwUBD2ZWsbyVSgvD8TcjdxzcMcj\nLBnYUaZ8wHFqUj2
DBahctfKQxA8Ptrzt1mDIGOQliZGDwrTVMECd+noQhTlF1eS+\nvNraV3dYRMymVxh58MPEaDJgwIRcBWAAOeBbZlyx76oskXdmjOiz5jqyoR5eweCE\ntS4jfM
EW6UECAwEAAaOCAx4wggMaMAsGA1UdDwQEAwIBhjAQBgkrBgEEAYI3FQEE\nAwIBADAdBgNVHQ4EFgQUdn7nwFGpb8uzpFVs5QWQcsA0Q6IwQwYDVR0gBDwwOjA
4\nBgwrBgEEAYGlZAMCAgEwKDAmBggrBgEFBQcCARYaaHR0cDovL3BraXdlYi5iYXNm\nLmNvbS9jcAAwGQYJKwYBBAGCNxQCBAweCgBTAHUAYgBDAEEwEgYDVR
0TAQH/BAgw\nBgEB/wIBADAfBgNVHSMEGDAWgBSS9auUcX38rmNVmQsv6DKAMZcmXDCCAQkGA1Ud\nHwSCAQAwgf0wgfqggfeggfSGgbZsZGFwOi8vL0NOPUJBU
0YlMjBSb290JTIwQ0El\nMjAyMSxDTj1DRFAsQ049UHVibGljJTIwS2V5JTIwU2VydmljZXMsQ049U2Vydmlj\nZXMsQ049Q29uZmlndXJhdGlvbixEQz1yb290
LERDPWJhc2YsREM9Y29tP2NlcnRp\nZmljYXRlUmV2b2NhdGlvbkxpc3Q/YmFzZT9vYmplY3RDbGFzcz1jUkxEaXN0cmli\ndXRpb25Qb2ludIY5aHR0cDovL3B
raXdlYi5iYXNmLmNvbS9yb290Y2EyMS9CQVNG\nJTIwUm9vdCUyMENBJTIwMjEuY3JsMIIBNgYIKwYBBQUHAQEEggEoNIIBJDCBuQYI\nKwYBBQUHMAKGgaxsZG
FwOi8vL0NOPUJBU0YlMjBSb290JTIwQ0ElMjAyMSxDTj1B\nSUEsQ049UHVibGljJTIwS2V5JTIwU2VydmljZXMsQ049U2VydmljZXMsQ049Q29u\nZmlndXJhd
GlvbixEQz1yb290LERDPWJhc2YsREM9Y29tP2NBQ2VydGlmaWNhdGU/\nYmFzZT9vYmplY3RDbGFzcz1jZXJ0aWZpY2F0aW9uQXV0aG9yaXR5MGYGCCsGAQUF\n
BzAChlpodHRwOi8vcGtpd2ViLmJhc2YuY29tL3Jvb3RjYTIxL1JPT1RDQTIxLnJ6\nLWMwMDctajY1MC5iYXNmLWFnLmRlX0JBU0YlMjBSb290JTIwQ0ElMjAyM
S5jcnQw\nDQYJKoZIhvcNAQELBQADggIBAClCvn9sKo/gbrEygtUPsVy9cj9UOQ2/CciCdzpz\nXhuXfoCIICgc0YFzCajoXBLj4V6zcYKjz8RndaLabDaaSQgj
phXFiZSBH8OII+cp\nTCWW1x+JElJXo9HB7Ziva2PeuU5ajXtvql5PegFYWdmgK2Q1QH0J2f1rr7B4nNGu\noyBi1TOSll+0yJApjx213lM9obt6hkXkjeisjcq
auMVh+8KloM0LQOTAD1bDAvpa\nVVN9wlbytvf4tLxHpvrxEQEmVtTAdVchuQV1QCeIbqIxW41l6nhE2TlPwEmTr+Cv\najMID/ebnc9WzeweyTddb6DSmn4mSc
okGpj8j8Z7cw173Yomhg1tEEfEzip+/Jx6\nd2qblZ9BUih9sHE8rtUBEPLvBZwr2frkXzL3f8D6w36LxuhcqJOmDaIPDpJMH/65\nAbYnJyhwJeGUbrRm3zVtA
5QHIiSHi2gTdEw+9EfyIhuNKS4FO/uonjJJcKBtaufl\nGFL6y0WegbS5xlMV9RwkM22R7sQkBbDTr+79MqJXYCGtbyX0JxIgOGbE4mxvdDVh\nmuPo9IpRc5Jl
pSWUa7HvZUEuLnUicRbfrs1PK/FBF7aSrJLoYprHPgP6421pl08H\nhhJXE9XA2aIfEkJ4BcKw0BqOP/PEScyptUSAaGjS4JuxsNoL6URXYHxJsR0bPlet\nSct
3\n-----END CERTIFICATE-----\n"
 
cd /etc/pki/trust/anchors/
echo -e -n $DrJ_Root_CA &gt; DrJ_Root_CA.pem
c_rehash
update-ca-certificates

So the key commands are c_rehash and update-ca-certificates.

Usually SLES is similar to Redhat. But it seems to be different in this case.

This was tested on a SLES 12 SP3 system.

It copies the certificate to /etc/pki/trust/anchors, which by itself is insufficient. Then it creates some kind of hash symlink to the CA file and makes sure that this new certificate doesn’t get wiped out by subsequent system patching. That’s the purpose of the c_rehash and update-ca-certificates commands.

You may also see these hashes and certificates in /etc/ssl/certs. I’m not sure because that’s where I started with all this. But merely dropping the private root CA into /etc/ssl/certs is insufficient, I can say from experience!

Redhat
Redhat is better documented, but for completeness I include it here. You have your inline certificate as in the SLES script, then following that:

...
cd /etc/pki/ca-trust/source/anchors/
echo -e -n $DrJ_Root_CA > DrJ_Root_CA.pem
update-ca-trust

So update-ca-trust is the key command for Redhat Linux. This was tested on Redhat Linux v 7.6.

Fedora v 33

Put your CA file with a .crt file extension into /etc/pki/ca-trust/source/anchors like for Redhat. Run update-ca-trust extract

Debian Linux circa 2023

Put your private CA file into a new directory /usr/share/ca-certificates/extra. Then run sudo dpkg-reconfigure ca-certificates. When prompted with a list of bundles to include make sure to enable your new extra file. Your certificate file needs to end in ‘crt’, not, e.g., ‘cer’. Seems pretty arbitrary to me, but that’s how it is. Of course it has to be standard PEM format. (—BEGIN CERTIFICATE—, etc.).

Python and self-signed certificates or certificates from private CAs

First, note that those are two different cases and need to be handled slightly differently! You may be in need of these measures if you are getting an error in python like this:

urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host=’www.myhost.local’, port=443): Max retries exceeded with url: / (Caused by SSLError(SSLCertVerificationError(1, ‘[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1123)’)))

Self-signed certificate

If the certificate is truly self-signed, then throw it into a file, let’s call it my-crt.crt in your home directory. Then set an environment variable before running python:

$ export REQUESTS_CA_BUNDLE=~/my-crt.crt

It should now work.

Python reverts to SSL: CERTIFICATE_VERIFY_FAILED after upgrade

So I had it all working. Then the requests package complained about my version of the urllib package. So I upgraded requests with a pip3 –upgrade requests. They the above-mentioned SSL error came back. I noticed that urllib got upgraded when requests was upgraded.

I basically gave up and totally kludged python to fix this. But only after playing with the certifi package etc. So I took the file that is for me the output of certifi.where(): /usr/local/lib/python3.9/site-packages/certifi/cacert.pem

I edited it as root and simply appended by private root CAs to that file. I hated to do it, and I know I should have at least used a virtual env, blah, blah. But at least now my jobs run. By the way, my by-hand tests of urlopen all worked! So it’s just the way some package was using it beyond my control that I had to create this kludge.

Certificate issued from a private CA

I added the private CA to the system CA on Debian with the update-ca-certificates mentioned above. Still no joy. Then I noticed the web server forgot to provide the intermediate certificate so I added that as well. Then, at least, curl began to work. But not python. Strange. For python I still need to define this environment variable:

$ export REQUESTS_CA_BUNDLE=/etc/ssl/certs/ca-certificates.crt

A second method to handle the case of a certificate issued from a private CA is to bundle the certificate + the intermediate certificate + the private root CA all into a single file, let’s call it my-crt.crt, in your home directory, and define the envirnoment variable same as for the self-signed certificate case:

$ export REQUESTS_CA_BUNDLE=~/my-crt.crt

My favorite openssl commands shows some commands to run to examine the certificate of a web server.

lftp usage tip with a private CA
If like me you were doing this work in conjunction with running ftps using a certificate signed by a private CA, and want your ftp client, lftp, to not complain about the unrecognized CA, then this tip will help.

After initiating your lftp and sending the username and password, you can send this command
$ ssl:ca-file <path-to-your-private-CA-file>
lftp is so flexible it offers many other ways to do this as well. But this is the one I use.

Conclusion
We show how to add your own root CA to a SLES 12 system. I did not find a good reference for this informaiton anywhere on the Internet.

References and related
My favorite openssl commands.

The basics of working with cipher settings

For Reedhat/CentOS I am evaluating this blog post on the proper way to add your own private CA: https://www.happyassassin.net/2015/01/14/trusting-additional-cas-in-fedora-rhel-centos-dont-append-to-etcpkitlscertsca-bundle-crt-or-etcpkitlscert-pem/

For the Redhat approach I used this blog post: https://www.happyassassin.net/2015/01/14/trusting-additional-cas-in-fedora-rhel-centos-dont-append-to-etcpkitlscertsca-bundle-crt-or-etcpkitlscert-pem/

Categories
Admin Linux Raspberry Pi

Fishcam using Raspberry Pi and some network tricks

Intro
There are more articles about running a webcam using Raspberry Pi than Carter has pills. Why bother to create another? This one is unique insofar as I created a fishcam at a school with a restricted network. None of the reference articles I found discussed a way to get your stream onto the Internet except the simplistic approach only available to homeowners of setting up a rule on a home router. Pimylifeup’s article is typical of that genre.

Cooperating third party
To push this webcam out to the Internet when I had no way to allow inbound traffic to the Pi, I realized that I needed a cooperating third party. I looked briefly for a commercial service specializing in this. I did not find one. I suppose there is, but I don’t know. It was actually quicker to stop the search and use my own AWS server as the cooperating third party.

With a cooperating third party what you can do is set up a forwarder from the Pi to cooperating server on the Internet. So that’s what I did. More on that below.

Network restrictions
The Pi was given WiFi access to a school’s bring your own device (BYOD) WiFi. By trial and error (I did not initiate extensive port scans, etc so as to avoid acting like a hacker). I’m familiar with running a almost completely open Guest wireless. This BYOD was not that for some reason unknown to me. One of the first things I tried, to ssh to my server, was not going through. So I knew there were restrictions. Also PING 8.8.8.8 did not work. So ICMP was blocked as well. But web browsing worked, and so did DNS queries. So TCP ports 80 and 443 were allowed, as well as UDP port 53 and possibly TCP port 53. I also observed there was no proxy server involved in the communication. So I simply tested a few other ports that I know are used from time-to-time: 2443 and 8443. If you a hit a server that is not protected by a firewall and not listening on a port that you are testing you will get a Connection reset if your packets are not blocked by a local firewall. I tested with the nc utility. nc -v <my_server> <port> I found a couple open ports this way. Next question: does the network care what protocol is running on that port? They might be looking for https and I was planning to run ssh. For a simple port blocker it might not distinguish what’s going on. That was indeed the case as I was able to run ssh on this non-standard port.

The single most comlicated thing was formulating the appropriate ssh command. I created a dedicated account on my server for this purpose. I embedded the password into the startup script I created using a utility called sshpass. This is not super secure but I wanted something running quickly.

Here’s that complicated command

sshpass -p <PASSWORD> ssh ‐f ‐N ‐R 8443:localhost:8081 ‐p 2443 <USERNAME>@<SERVER_IP>

That’s a mouthful! Let’s break it down. sshpass just permits you to run the command and not get a login prompt. It needs to be installed with a sudo apt-get sshpass.

The ssh command sets up a reverse tunnel. I have discussed it in my Access your Raspberry Pi from anywhere blog post, however, some things are different and more complicated here. Here we are setting up port 8443 on my server as the tunnel port which will be accessible to the Internet. It is terminated on the Raspberry Pi’s local port 8081 (the port that the motion package uses for the webcam). We had to use ssh to connect to port 2443 on my server because the school network blocked the standard port 22. Then <PASSWORD>, <USERNAME> and <SERVER_IP> are to be replaced with values specific for my server. I don’t want to publish them.

How I got my server to run ssh on port 2443 as well as port 22
This turned out to be one of the easiest things. It’s good to run your own server… In the file /ets/ssh/sshd_config the listening port was commented out, letting the defaul 22 be in effect. So I uncommented that and added port 2443 like this:

...
# Listen on multiple ports - DrJ 2/1/19
Port 22
Port 2443
...

Then a sudo service sshd restart and the server listens on both ports for ssh connections!

About the webcam itself
I just followed the Pimylife article as I mentioned. It talks about using the motion package which I’ve never used before. Now in my other posts you’ll see I do stuff with video on Raspberry Pi. In those we had to fight to get the lag time down and keep bandwidth low. I have to say by comparison this motion package is awful. Lag is a couple seconds. There is no sense whatsoever of true video. Just image, wait, next image, wait. No matter the fps setting. I did not have time to switch to a video package that works better. Anyway motion may provide some other advantages we could eventually use. So I just set it to 2 fps (frames per second) since it doesn’t really matter.

The fishcam is at fishcam. It’s not working right now – just showing black. I’m not sure why.

Auto starting
I’ve documented elsewhere the poor man’s way to start something upon initially booting the Pi: stuff the appropriate command into the crontab file.

So you edit your crontab file with a crontab -e. Then you enter

@reboot sleep 20; sshpass -p <PASSWORD> ssh ‐f ‐N ‐R 8443:localhost:8081 ‐p 2443 <USERNAME>@<SERVER_IP>

That just sleeps for 20 seconds as your Pi boots up, then establishes the reverse tunnel with that complicated command I explained earlier.

Equipment
Usually thes tutorials start with an equipment list. For me that is the least interesting part. I used a Raspberry Pi 3 running Raspbian. For a camera I used one of my spare USB ELP cameras from my extensive work with USB cameras. While developing the solution I needed a keyboard, mouse and HDMI monitor. Once running, the only thing connected to the Pi is the USB camera and the micro USB power supply.

To be continued…

References and related
A very good guide for your typcial webcam-using-a-Raspberry-Pi situation, i.e., not what I am addressing in my article.

Access your Raspberry Pi from anywhere blog post

Run multiple USB cameras on your Raspberry Pi while keeping lag minimal.

For supplies we love visits to The Micro Center in Paterson, NJ. This past weekend we got Raspberry Pi 3’s for only $29. And the sales tax is only 3% and change.

Categories
Linux Raspberry Pi

Evaluation of WPI’s multiple camera coprocessor using Raspberry Pi

Intro
There’s some good and some not-so-good about the new WPI-provided way to handle multiple video streams using a Raspebrry Pi.

ELP Cameras problems
I have bought many of these ELP cameras last year and this. I may be a slow learner, but eventually it dawned on me that the problems I noticed seem to occur because of this model of USB camera. Finally this year we got a chance to explore this further. I got my hands on a Logitech webcam, the kind you use perched on top of a display monitor. We had this set up as a second camera while an ELP camera was the first. Then we rebooted the Pi a whole bunch of times to gather some stats. About 25% of the time there were problems with the ELP over about 10 tries. There were no problems with the Logitech. Here are various problems we’e seen:
– horizontal lines superimposed over image, and image dull
– ghosting, a corner of the field of view is shown in the center of the image
– sometimes the stream never starts and we’re not yet sure if that’s a camera problem or a software problem though I begin to suspect it’s an ELP problem
– one of my pinhole ELP cameras died

So: Logitech webcam is decidedly better.

Power problem
We pay extra attention to the power draw of the Pi. With two cameras attached and a 2 amp or 1.8 amp power supply the red LED power flashes. That is not good. It’s a sign of undervoltage. The command

vcgencmd get_throttled

on your Pi will tell you if there was an undervoltage condition. I see

throttled=0x50005

when using a 2 amp power supply. Note that as far as we can see the camera display itself works just as well. We also have a 3 amp power supply. That produces a solid red led light and vcgencmd get_throttled produces a response of

throttled=0x0,

which probably indicates there were no undervoltage conditions.

The problem we need to avoid for the Pi to attempt to draw more than 2 amps from the regulator. Doing so may shut it down. So we will try to use the Pi along with a powered USB hub.

Bandwidth constraints
We want to be well below 3 mbps for two cameras. How to get there while still providing a useful service. Initially we felt we could run the cameras at 320×240 resolution, 10 fps. But after much playing we found conditions under which we exceed 3 mbps though normally we were below that. I believe that the compressibility of the image is what matters. So a “rich” visudal field with lots of contrasting objects is the least compressible. That vaguely fits our findings as well. So we felt it important to prepare for the worst case. So we actually looked at supported resolutions and settled on 176×144 pixels! It sure isn’t much, agreed, but it’s still helpful. We blow up the images during the display. We use YUYV mode. MJPEG uses considerably more bandwidth.

Refresh trick
With this WPI software, the video streams never display the first time. You have to refresh the page for some reason. We wished to have a one click operation for viewing, however, to minimize the risk of operator error. So we used some old-fashioned META HTML tags to force a page refresh.

Our initial approach was to simply have the web page refresh itself every five seconds. This worked, but caused instability in the video stream itself and given a few minutes, would always crash the video stream. So we came up with an alternative that does a single page refresh. Unfortunately we’re not that conversant in Javascript (I’m sure there’s a way to do this with Javascript) so instead we wrote two HTML pages: a source page with the refresh, and a target page that does not refresh.

Initial page HTML source

<html><head>
<meta http-equiv="Refresh" content="1;url=file:///C:/users/aperture/Desktop/2019-no-refresh.htm">
<title>stream</title></head>
<body>
<img src="http://10.31.42.18:1182/stream.mjpg" width=560 height=400>
<img src="http://10.31.42.18:1181/stream.mjpg" width=560 height=400>
</body>
</html>

And we size the browser window to just fit the two video streams side-by-side.

Target HTML source for 2019-no-refresh.htm

<html><head>
<title>stream</title></head>
<body>
<img src="http://10.31.42.18:1182/stream.mjpg" width=560 height=400>
<img src="http://10.31.42.18:1181/stream.mjpg" width=560 height=400>
</body>
</html>

Timing and sequence of events
After the Ras Pi is powered up, we launch the initial page from the task bar where it was pinned, 20 seconds later.

It takes a bit of time, then it displays the side-by-side video streams as broken images.

The red LEDs on the Logitech webcams begin to glow.

(We know when we see both red LEDs glowing we are good to go by the way).

the refresh occurs automatically to the 2019-no-refresh.htm web page.

Two side-by-side video streams are displayed, each with 560×400 display dimensions.

References and related
My 2018 version of using the Raspebrry Pi to handle two USB cameras: USB webcam on Raspberry Pi

Field Management System spec for 2019

https://s3.amazonaws.com/screensteps_live/exported/Wpilib/2078/103766/Using_a_Raspberry_PI_as_a_video_coprocessor.pdf?1546622998
WPI PDF manual, Using a Ras Pi as Video coprocessor

Download compressed image from Github: https://github.com/wpilibsuite/FRCVision-pi-gen/releases/. Scroll down to Assets and look for FRCVision_image_2019xxxx.zip. (2019.3.1 is the latest at time of this writing.

Logitech webcam: https://smile.amazon.com/gp/product/B01IC2UDMC/ref=ppx_yo_dt_b_asin_title_o00__o00_s00?ie=UTF8&psc=1

FIRST FRC Networking Basics